def __init__(self, x, y, robot_state, robot_param, vel = 1.0, length_path_end=5.0) :
        # Class Variables
        self._mutex = Lock()

        # Arguments
        self.x = x
        self.y = y
        self.wheelbase = robot_param.wheelbase
        self.offset = robot_param.length_offset
        self.min_length_goal_reached = length_path_end
        self.robot_state = robot_state

        # Calculate related path element/stuff/foo
        self.dx, self.dy    = self._calc_dot()
        self.ddx, self.ddy  = self._calc_ddot()
        self.yaw            = self._calc_yaw(self.dx, self.dy, vel)
        self.curve          = self._calc_curve(self.dx, self.ddx, self.dy, self.ddy)
        self.steer          = self._calc_steer(self.curve, vel)
        self.x_offset, self.y_offset            = self._calc_offset_path(self.x, self.y, self.yaw)
        self.arclength, self.ds, self.ds_mean   = self._calc_arclength(self.dx, self.dy)
        self.steerRate      = self._calc_steerRate(self.steer, self.ds, vel)

        # Set Goal
        self.lateral_error = np.full(shape=(len(self.arclength),), fill_value=np.NAN) 
        self.goal = xyYaw_to_matrix(self.x_offset[-1], self.y_offset[-1], self.yaw[-1])
        self.goalInv = inv(self.goal)
        self.index_nn = -1
        self.index_nn_lh = -1
        self.meters_around_last_nnidx = 0.3 * vel # Multiplication with the desired/mean velocity for normalization

        self.drivenPath = DrivenPath( )
        self.referencePath = None
        self.predictionPath__dlqt_mpc = None
    def _get_errorMatrix(self, desired, l10nOffset, in_robotframe=False) :
        xo, yo, yaw = l10nOffset[0], l10nOffset[1], l10nOffset[2]
        actual = xyYaw_to_matrix(xo, yo, yaw)

        if in_robotframe == False:
            diff_tf = inv(desired) @ actual
        else: # in Robot-Frame
            diff_tf = inv(actual) @ desired
            pass

        return diff_tf
예제 #3
0
    def _l10n_discontinous(self, yawRate):
        xyYaw_now = self.get_xyYaw()

        tfMatrix_now = mytf.xyYaw_to_matrix(xyYaw_now)

        if self.xyYaw_update is None:
            self.xyYaw_update = xyYaw_now

        if mytf.getLength2D(xyYaw_now,
                            self.xyYaw_update) > self.l10n_update_distance:
            self.xyYaw_update = xyYaw_now
            dx = np.random.normal(0.0, self.var_xy)
            dy = np.random.normal(0.0, self.var_xy)
            dYaw = np.random.normal(0.0, self.var_yaw)
            dYaw = mytf.getYawRightRange(dYaw)
            self.dtfMatrix = mytf.xyYaw_to_matrix(dx, dy, dYaw)

        map_2_l10n = tfMatrix_now @ self.dtfMatrix
        lx, ly, lYaw = map_2_l10n[0, 3], map_2_l10n[1, 3], mytf.matrix_to_yaw(
            map_2_l10n)
        self._set_l10n_pose(lx, ly, lYaw)
    def _get_indexNearestPosition_byCircle(self, l10nOffset, lookahead_distance):

        idx_around_last_nn = int( self.meters_around_last_nnidx / np.fabs(self.ds_mean)+1  )
        # Define Start-Idx for the Loop
        start_index = self.index_nn_lh - idx_around_last_nn
        if start_index < 0 :
            start_index = 0
        # Define End-Idx for the Loop
        if self.index_nn_lh < 0: # self.index_lookahead is not inited
            end_index = len(self.x)
        else: 
            end_index = self.index_nn_lh + idx_around_last_nn
        if end_index > len(self.x) :
            end_index = len(self.x)

        # GET DESIRED-POSE
        dist_to_lookahead = float("inf")
        path_desired_idx = self.index_nn_lh
        actual_tfMatrix = xyYaw_to_matrix(l10nOffset[0], l10nOffset[1], l10nOffset[2])
        for i in range(start_index, end_index) :           
            iPath_tfMat = xyYaw_to_matrix(self.x_offset[i], self.y_offset[i], self.yaw[i])
            dist_offset2path = getLength2DSign(actual_tfMatrix, iPath_tfMat)
            if dist_offset2path < 0.0 :
                continue
            else :
                eDist = dist_offset2path - lookahead_distance
                
                if eDist <= 0.0 :
                    continue
                elif eDist < dist_to_lookahead :
                    dist_to_lookahead = eDist
                    path_desired_idx = i
                    if np.fabs(dist_to_lookahead) <  np.fabs(self.ds_mean):
                        break

       
        desired_pose_matrix = xyYaw_to_matrix(self.x_offset[path_desired_idx], self.y_offset[path_desired_idx], self.yaw[path_desired_idx])
        return path_desired_idx, dist_offset2path, desired_pose_matrix
예제 #5
0
    def _get_indexNearestPosition(self, robot_state, look_ahead=None):

        robot_state_lh = [robot_state[0], robot_state[1], robot_state[2] ]
        # print("robot_state_lh:", robot_state_lh)
        # sleep(11.1)
        if look_ahead is not None:
            # print("use look ahead")
            # print("before lh:", robot_state[0] )
            robot_state_lh[0] = robot_state_lh[0] + look_ahead * cos(robot_state[2])
            robot_state_lh[1] = robot_state_lh[1] + look_ahead * sin(robot_state[2])
            # print("after lh:", robot_state[0] )

            last_nn_idx = self.index_nn_lh

        else :
            last_nn_idx = self.index_nn #-1


        # Define Start-Index and End-Index for the Loop
        start_index = last_nn_idx - int(self.meters_around_last_nnidx /  np.fabs(self.ds_mean)+1 )
        if start_index < 0 : start_index = 0

        if last_nn_idx < 0: # at init, search in whole path
            end_index = len(self.x)
        else: 
            end_index = last_nn_idx + int( self.meters_around_last_nnidx / np.fabs(self.ds_mean)+1  )
            if end_index > len(self.x) : end_index = len(self.x)

        # Get index for neatest euclidean distance
        dL = float('Inf')
        index = 0
        xo, yo, yaw = robot_state_lh[0], robot_state_lh[1], robot_state_lh[2]
        # print("start_index: ", start_index)
        # print("end_index: ", end_index)
        # print("self.meters_around_last_nnidx: ", self.meters_around_last_nnidx)
        # print("int( self.meters_around_last_nnidx / np.fabs(self.ds_mean) = ", int( self.meters_around_last_nnidx / np.fabs(self.ds_mean) +1) )
        for i in range(start_index, end_index) :
            dL_ = np.hypot(self.x_offset[i] - xo, self.y_offset[i] - yo)
            if dL_ < dL :
                index = i
                dL = dL_

        # xyYaw = [self.x[index], self.y[index], self.yaw[index] ]
        pose_matrix = xyYaw_to_matrix(self.x_offset[index], self.y_offset[index], self.yaw[index])

        

        return index, dL, pose_matrix
예제 #6
0
    def __init__(self,
                 robot_parameter,
                 x=0.0,
                 y=0.0,
                 yaw=0.0,
                 steerAngle=0.0,
                 velocity=0.0,
                 var_xy=0.0,
                 var_yaw=0.0,
                 l10n_update_distance=0.0):

        self._mutex = Lock()
        self.look_ahead = robot_parameter.look_ahead
        self.length_offset = robot_parameter.length_offset
        self.var_xy = var_xy
        self.var_yaw = var_yaw
        self.l10n_update_distance = l10n_update_distance
        self.xyYaw_update = None
        self.dtfMatrix = mytf.xyYaw_to_matrix(x=0.0, y=0.0, yaw=0.0)

        # POSE
        self.x = x
        self.y = y
        self.xo = x + self.length_offset * cos(yaw)
        self.yo = y + self.length_offset * sin(yaw)
        self.yaw = yaw
        self.yawRate = 0.0
        # Localization
        self.lx = x
        self.ly = y
        self.lYaw = yaw
        self.lxo = self.xo
        self.lyo = self.yo
        # STEERING
        self.steerAngle = steerAngle
        self.steerAngleDes = 0.0
        self.steerAngleRate = 0.0
        self.steerAngleRateDes = 0.0

        self.deltaVel = 0.0
        self.deltaVelDes = 0.0

        # DRIVE
        self.velocity = velocity
        self.accel = 0.0
예제 #7
0
    def _is_behindGoal(self, robot_state, velocity):
        xo, yo, yaw = robot_state[0], robot_state[1], robot_state[2]
        actual = xyYaw_to_matrix(xo, yo, yaw)
        goal2actual = self.goalInv @ actual
        length_to_goal = np.hypot( goal2actual[0,3], goal2actual[1,3] )

        if length_to_goal > self.min_length_goal_reached :
            return False
        else :
            
            dx = goal2actual[0, 3]

            if velocity > 0.0 and dx > 0.0:
                return True
            elif velocity < 0.0 and dx < 0.0:
                return True 
            else :
                False               
예제 #8
0
 def _get_errorMatrix(self, desired, robot_state) :
     xo, yo, yaw = robot_state[0], robot_state[1], robot_state[2]
     actual = xyYaw_to_matrix(xo, yo, yaw)
     diff_tf = inv(desired) @ actual
     return diff_tf
예제 #9
0
    ##################


if __name__ == "__main__":
    print("MAIN for testing the class")

    rp = Robot_Parameter()
    rs = Robot_State(rp)
    # rs.x = 3.0

    # print(rsd.get_asVector() )

    rsd_disc.set_pose(x=4.9, y=2.6, yaw=1.2)

    print("BLA:", rsd_disc.get_asVector())

    # Test Varaiance
    max_ = 0.0
    for a in range(1):
        rand_x = np.random.normal(0.0, rsd_disc.var_xy)
        rand_y = np.random.normal(0.0, rsd_disc.var_xy)
        print("dist", np.hypot(rand_x, rand_y), "rand_x:", rand_x, "rand_y:",
              rand_y)
        dist = np.hypot(rand_x, rand_y)
        if dist > max_:
            max_ = dist

    print("max_", max_)

    print(mytf.xyYaw_to_matrix(x=1.0, y=2.0, yaw=1.4))