예제 #1
0
ax = plt.subplot(111, projection=WCS(moment0.header))
im = ax.imshow(moment0_Kkm_s,
          origin='lower',
          interpolation='nearest',
          norm=ImageNormalize(vmin=-0.001,
                              vmax=np.nanmax(moment0_Kkm_s),
                              stretch=AsinhStretch()))
ax.set_ylabel("DEC (J2000)")
ax.set_xlabel("RA (J2000)")

cbar = plt.colorbar(im)
cbar.set_label(r"Intensity (K km s$^{-1}$)")

# raw_input("?")

plt.savefig(paper1_figures_path("zeroth_moment_map_14B088.pdf"))
plt.savefig(paper1_figures_path("zeroth_moment_map_14B088.png"))

p.clf()

moment1 = fits.open(fourteenB_HI_data_path(moment1_name))[0]

ax = plt.subplot(111, projection=WCS(moment1.header))
im = ax.imshow(moment1.data / 1000.,
          origin='lower', vmin=-300, vmax=-70,
          interpolation='nearest', cmap='viridis')

ax.set_ylabel("DEC (J2000)")
ax.set_xlabel("RA (J2000)")

cbar = plt.colorbar(im)
예제 #2
0
rs, sd, sd_sigma = radial_profile(gal, lwidth_co, max_rad=6 * u.kpc,
                                  dr=dr)

sd = sd.to(u.km / u.s)
sd_sigma = sd_sigma.to(u.km / u.s)

p.errorbar(rs.value, sd.value,
           yerr=sd_sigma.value, fmt="-", color="b",
           drawstyle='steps-mid')
p.xlabel("R (kpc)")
p.ylabel("CO Velocity Dispersion (km/s)")
p.grid()
p.draw()

p.savefig(paper1_figures_path("co_veldisp_profile_{}pc.pdf".format(dr.value)))
p.savefig(paper1_figures_path("co_veldisp_profile_{}pc.png".format(dr.value)))
p.close()

# raw_input("Next plot?")

# Create the North and South portions.
rs_n, sd_n, sd_sigma_n = \
    radial_profile(gal, lwidth_co, max_rad=6 * u.kpc,
                   pa_bounds=Angle([0.5 * np.pi * u.rad,
                                    -0.5 * np.pi * u.rad]))
sd_n = sd_n.to(u.km / u.s)
sd_sigma_n = sd_sigma_n.to(u.km / u.s)
rs_s, sd_s, sd_sigma_s = \
    radial_profile(gal, lwidth_co, max_rad=6 * u.kpc,
                   pa_bounds=Angle([-0.5 * np.pi * u.rad,
예제 #3
0
    # Beyond 8 kpc, noise is dominant. It may be some reflection of the
    # warp, but I don't trust it right now.
    rs, sd, sd_sigma = radial_profile(gal, lwidth, max_rad=8 * u.kpc)

    sd = sd.to(u.km / u.s)
    sd_sigma = sd_sigma.to(u.km / u.s)

    p.errorbar(rs.value, sd.value,
               yerr=sd_sigma.value, fmt="-", color="b",
               drawstyle='steps-mid')
    p.xlabel("R (kpc)")
    p.ylabel("HI Velocity Dispersion (km/s)")
    p.grid()
    p.draw()

    p.savefig(paper1_figures_path("hi_veldisp_profile.png"))
    p.savefig(paper1_figures_path("hi_veldisp_profile.pdf"))

    # raw_input("Next plot?")
    p.clf()

    # Create the North and South portions.
    rs_n, sd_n, sd_sigma_n = \
        radial_profile(gal, lwidth, max_rad=8 * u.kpc,
                       pa_bounds=Angle([0.5 * np.pi * u.rad,
                                        -0.5 * np.pi * u.rad]))
    sd_n = sd_n.to(u.km / u.s)
    sd_sigma_n = sd_sigma_n.to(u.km / u.s)
    rs_s, sd_s, sd_sigma_s = \
        radial_profile(gal, lwidth, max_rad=8 * u.kpc,
                       pa_bounds=Angle([-0.5 * np.pi * u.rad,
예제 #4
0
    p.ioff()

    # Show the total radial profile VLA and Arecibo
    p.errorbar(rs.value, sd.value / scale_factor,
               yerr=sd_sigma.value / scale_factor, fmt="-", color="b",
               label="VLA", drawstyle='steps-mid')
    p.plot(rs_arec.value, sd_arec.value, "g--", drawstyle='steps-mid',
           label="Arecibo")
    # p.errorbar(rs_arec.value, sd_arec.value, yerr=sd_sigma_arec.value,
    #            fmt="o--", color="g", label="Arecibo", drawstyle='steps-mid')
    p.ylabel(r"$\Sigma$ (M$_{\odot}$ pc$^{-2}$)")
    p.xlabel(r"R (kpc)")
    p.legend(loc='best')
    p.grid("on")
    p.savefig(paper1_figures_path("M33_Sigma_profile_w_Arecibo.pdf"))
    p.savefig(paper1_figures_path("M33_Sigma_profile_w_Arecibo.png"))
    p.clf()

    # W/ archival VLA
    p.errorbar(rs.value, sd.value / scale_factor,
               yerr=sd_sigma.value / scale_factor, fmt="-", color="b",
               label="VLA", drawstyle='steps-mid')
    p.plot(rs_arec.value, sd_arec.value, "g--", drawstyle='steps-mid',
           label="Arecibo")
    p.errorbar(rs_arch.value, sd_arch.value, yerr=sd_sigma_arec.value,
               color="r", fmt="-.", drawstyle='steps-mid',
               label="Archival VLA")
    # p.errorbar(rs_arec.value, sd_arec.value, yerr=sd_sigma_arec.value,
    #            fmt="o--", color="g", label="Arecibo", drawstyle='steps-mid')
    p.ylabel(r"$\Sigma$ (M$_{\odot}$ pc$^{-2}$)")
예제 #5
0
                            pa_bounds=Angle([-0.5 * np.pi * u.rad,
                                             0.5 * np.pi * u.rad]),
                            max_rad=6 * u.kpc, dr=dr)
sd_n /= beam_eff
sd_sigma_n /= beam_eff

p.ioff()
p.errorbar(rs.value, np.log10(sd.value),
           yerr=0.434 * sd_sigma.value / sd.value, fmt="-", color="b",
           label=r"H$_2$", drawstyle='steps-mid')
p.ylabel(r" log $\Sigma$ (M$_{\odot}$ pc$^{-2}$)")
p.xlabel(r"R (kpc)")
# p.legend(loc='best')
p.grid("on")

p.savefig(paper1_figures_path("M33_Sigma_profile_co21_dr_{}pc.pdf".format(dr.value)))
p.savefig(paper1_figures_path("M33_Sigma_profile_co21_dr_{}pc.png".format(dr.value)))
p.close()
# p.show()

# Show the north vs south profiles
p.plot(rs.value, np.log10(sd.value), "k-.", drawstyle='steps-mid',
       label="Total")
p.errorbar(rs_n.value, np.log10(sd_n.value),
           yerr=0.434 * sd_sigma_n.value / sd_n.value, fmt="-", color="b",
           label="North", drawstyle='steps-mid')
p.errorbar(rs_s.value, np.log10(sd_s.value),
           yerr=0.434 * sd_sigma_s.value / sd_s.value, fmt="--", color="g",
           label="South", drawstyle='steps-mid')

# p.plot(rs_n.value, sd_n.value, "bD-", label="North")
예제 #6
0
# VLA needs to be corrected by a 1.45 factor. See arecibo_match_props.py
total_spectrum = total_spectrum * u.Jy
total_spectrum_arecibo = total_spectrum_arecibo * u.Jy

p.plot(cube.spectral_axis.to(u.km / u.s).value, total_spectrum.value, 'b-',
       label="VLA", drawstyle='steps-mid')
p.plot(arecibo.spectral_axis.to(u.km / u.s).value,
       total_spectrum_arecibo.value, 'g--', label='Arecibo',
       drawstyle='steps-mid')
p.ylabel("Total Intensity (Jy)")
p.xlabel("Velocity (km/s)")
p.legend(loc='upper left')
p.grid()

p.savefig(paper1_figures_path("total_profile.pdf"))
p.savefig(paper1_figures_path("total_profile.png"))

p.close()

# Now we can get the total mass

# Disregard outside this velocity range
vmax = -100 * u.km / u.s
vmin = -300 * u.km / u.s

spec_axis = cube.spectral_axis.to(u.km / u.s)
good_chans = np.logical_and(spec_axis <= vmax, spec_axis >= vmin)

# Same channel width in both
chan_width = \
예제 #7
0
mom1_wcs = wcs.WCS(mom1[0].header)

scale = wcs.utils.proj_plane_pixel_scales(mom1_wcs)[0]
# Distance scaling (1" ~ 4 pc). Conversion is deg to kpc
dist_scale = (np.pi / 180.) * gal.distance.to(u.kpc).value


# Plot the rotation curves
plt.errorbar(cent_tab["r"] * scale * dist_scale, cent_tab["Vt"],
             yerr=cent_tab["eVt"], markersize=7,
             label='Centroid', fmt='D-', alpha=0.8)

plt.errorbar(peak_tab["r"] * scale * dist_scale, peak_tab["Vt"],
             yerr=peak_tab["eVt"], markersize=7,
             label='Peak Velocity', fmt='o-', alpha=0.8)

plt.errorbar(gh_tab["r"] * scale * dist_scale, gh_tab["Vt"],
             yerr=gh_tab["eVt"], markersize=7,
             label='Gauss-Hermite Fit', fmt='+-', alpha=0.8)

plt.legend(loc='lower right')
plt.grid()

plt.ylabel(r"V$_{\rm circ}$ (km/s)")
plt.xlabel("Radius (kpc)")

plt.savefig(paper1_figures_path("HI_rotation_curve_comparisons.png"))
plt.savefig(paper1_figures_path("HI_rotation_curve_comparisons.pdf"))

plt.close()