def init_from_config(): config_params = globals.config sparql_backend = globals.get_sparql_backend(config_params) query_extender = QueryCandidateExtender.init_from_config() entity_linker = EntityLinker.init_from_config() parser = CoreNLPParser.init_from_config() scorer_obj = ranker.SimpleScoreRanker('DefaultScorer') return QueryTranslator(sparql_backend, query_extender, entity_linker, parser, scorer_obj)
def get_from_config(cls, config_params): sparql_backend = globals.get_sparql_backend(config_params) query_extender = QueryCandidateExtender.init_from_config() entity_linker = globals.get_entity_linker() parser = globals.get_parser() scorer_obj = ranker.SimpleScoreRanker('DefaultScorer') ngram_notable_types_npmi_path = config_params.get('QueryCandidateExtender', 'ngram-notable-types-npmi', '') notable_types_npmi_threshold = float(config_params.get('QueryCandidateExtender', 'notable-types-npmi-threshold')) ngram_notable_types_npmi = None if ngram_notable_types_npmi_path and os.path.exists(ngram_notable_types_npmi_path): import cPickle as pickle try: with open(ngram_notable_types_npmi_path, 'rb') as inp: logger.info("Loading types model from disk...") ngram_notable_types_npmi = pickle.load(inp) except IOError as exc: logger.error("Error reading types model: %s" % str(exc)) ngram_notable_types_npmi = None return SparqlQueryTranslator(sparql_backend, query_extender, entity_linker, parser, scorer_obj, ngram_notable_types_npmi, notable_types_npmi_threshold)