def __init__(self, shape, mean=pr.BGR_IMAGENET_MEAN): super(PreprocessImage, self).__init__() self.add(pr.ResizeImage(shape)) self.add(pr.CastImage(float)) if mean is None: self.add(pr.NormalizeImage()) else: self.add(pr.SubtractMeanImage(mean))
def __init__(self, model, colors=None): super(PostprocessSegmentation, self).__init__() self.add(PreprocessImage()) self.add(pr.ExpandDims(0)) self.add(pr.Predict(model)) self.add(pr.Squeeze(0)) self.add(Round()) self.add(MasksToColors(model.output_shape[-1], colors)) self.add(pr.DenormalizeImage()) self.add(pr.CastImage('uint8')) self.add(pr.ShowImage())
def __init__(self, model, colors=None): super(PostprocessSegmentation, self).__init__() self.add(pr.UnpackDictionary(['image_path'])) self.add(pr.LoadImage()) self.add(pr.ResizeImage(model.input_shape[1:3])) self.add(pr.ConvertColorSpace(pr.RGB2BGR)) self.add(pr.SubtractMeanImage(pr.BGR_IMAGENET_MEAN)) self.add(pr.ExpandDims(0)) self.add(pr.Predict(model)) self.add(pr.Squeeze(0)) self.add(Round()) self.add(MasksToColors(model.output_shape[-1], colors)) self.add(pr.DenormalizeImage()) self.add(pr.CastImage('uint8')) self.add(pr.ShowImage())
def __init__(self, shape=(48, 48)): self.shape = shape super(PostrocessEigenFace, self).__init__() self.add(pe.MinMaxNormalization(255.0)) self.add(pe.Reshape(shape)) self.add(pr.CastImage('uint8'))
def __init__(self): super(PostProcessImage, self).__init__() self.add(pr.AddMeanImage(pr.BGR_IMAGENET_MEAN)) self.add(pr.CastImage('uint8')) self.add(pr.ConvertColorSpace(pr.BGR2RGB))
def __init__(self, num_classes, colors=None): super(PostprocessSegmentationIds, self).__init__() self.add(MasksToColors(num_classes, colors)) self.add(pr.DenormalizeImage()) self.add(pr.CastImage('uint8'))