def _build_graph(self, images, labels, mode): """Constructs the TF graph for the model. Args: images: A 4-D image Tensor labels: A 2-D labels Tensor. mode: string indicating training mode ( e.g., 'train', 'valid', 'test'). """ is_training = 'train' in mode if is_training: self.global_step = tf.train.get_or_create_global_step() logits = build_model(images, self.num_classes, is_training, self.hparams) self.predictions, self.cost = helper_utils.setup_loss(logits, labels) self._calc_num_trainable_params() # Adds L2 weight decay to the cost self.cost = helper_utils.decay_weights(self.cost, self.hparams.weight_decay_rate) if is_training: self._build_train_op() # Setup checkpointing for this child model # Keep 2 or more checkpoints around during training. with tf.device('/cpu:0'): self.saver = tf.train.Saver(max_to_keep=10) self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
def _build_graph(self, images, labels, mode): if self.hparams.model_name in ['resnet18']: if self.hparams.model_name == 'resnet18': model = Resnet18(self.num_classes) is_training = 'train' in mode if is_training: self.global_step = tf.train.get_or_create_global_step() logits = model(images, is_training) self.predictions, self.cost = helper_utils.setup_loss(logits, labels) self._calc_num_trainable_params() # Adds L2 weight decay to the cost self.cost = helper_utils.decay_weights(self.cost, self.hparams.weight_decay_rate) if is_training: self._build_train_op() # Setup checkpointing for this child model # Keep 2 or more checkpoints around during training. with tf.device('/cpu:0'): self.saver = tf.train.Saver(max_to_keep=10) self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) else: super(Model, self)._build_graph(images, labels, mode)
def _build_graph(self, images, labels, mode): """Constructs the TF graph for the model. Args: images: A 4-D image Tensor labels: A 2-D labels Tensor. mode: string indicating training mode ( e.g., 'train', 'valid', 'test'). """ is_training = 'train' in mode if is_training: self.global_step = 0 logits = build_model(images, self.num_classes, is_training, self.hparams) self.predictions, self.cost = helper_utils.setup_loss(logits, labels) self._calc_num_trainable_params() # Adds L2 weight decay to the cost self.cost = helper_utils.decay_weights(self.cost, self.hparams.weight_decay_rate) if is_training: self._build_train_op()