def run_pcanet_normal(transformer_params, images_train, images_test, y_train, y_test): model = PCANet(**transformer_params) model.validate_structure() t1 = timeit.default_timer() model.fit(images_train) t2 = timeit.default_timer() train_time = t2 - t1 t1 = timeit.default_timer() X_train = model.transform(images_train) t2 = timeit.default_timer() transform_time = t2 - t1 X_test = model.transform(images_test) y_test, y_pred = run_classifier(X_train, X_test, y_train, y_test) accuracy = accuracy_score(y_test, y_pred) return model, accuracy, train_time, transform_time
train_set, valid_set, test_set = load_mnist() images_train, y_train = train_set images_test, y_test = test_set images_train, y_train = shuffle(images_train, y_train, random_state=0) images_train, y_train = images_train[:n_train], y_train[:n_train] images_test, y_test = shuffle(images_test, y_test, random_state=0) images_test, y_test = images_test[:n_test], y_test[:n_test] pcanet = PCANet(image_shape=28, filter_shape_l1=2, step_shape_l1=1, n_l1_output=4, filter_shape_l2=2, step_shape_l2=1, n_l2_output=4, block_shape=2) pcanet.validate_structure() pcanet.fit(images_train) X_train = pcanet.transform(images_train) X_test = pcanet.transform(images_test) model = RandomForestClassifier(n_estimators=100, random_state=1234, n_jobs=-1) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("accuracy: " + str(accuracy))
images = random.shuffle(images) print(images) print(num_examples) print(images.shape) pcanet = PCANet(image_shape=(60, 80), filter_shape_l1=2, step_shape_l1=1, n_l1_output=4, filter_shape_l2=2, step_shape_l2=1, n_l2_output=4, block_shape=2) print("has excuted PCANET function") pcanet.validate_structure() print("has excuted pcanet.validate_structure") pcanet.fit(images) print("has excuted pacnet.fit") X_train = pcanet.transform(images) print("has excuted pcanet.transform") print(X_train) print(X_train.shape)