예제 #1
0
def controller(ctr, pole_angle_ref, state, gains, figures, serror, sum_error_ma, sfactor, prev_power):
    action =1
    cart_position,    cart_velocity ,    pole_angle , pole_velocity =ou.get_obs(state)
    pole_angle_gain,pole_velocity_gain,cart_position_gain,cart_velocity_gain = ou.get_gains(gains)
    
    pole_velocity_ref,pole_angle_error=proportional(pole_angle_ref, pole_angle, pole_angle_gain)
    cart_position_ref,pole_velocity_error=proportional(pole_velocity_ref, pole_velocity, pole_velocity_gain)
    cart_velocity_ref,cart_position_error=proportional(cart_position_ref, cart_position, cart_position_gain)
    power,cart_velocity_error=proportional(cart_velocity_ref, cart_velocity, cart_velocity_gain)
    print(power, end=" ")
    #power = prev_power + 0.05 * power
    power= rm.smooth(power, prev_power, 0.8)
    print(power)
    if power>=0:
        action=0
        
    sum_error = pole_angle_error+pole_velocity_error+cart_position_error+cart_velocity_error
    sum_error_ma=rm.smooth( sum_error, sum_error_ma, sfactor) 
    
    error=root_sum_squared_error([pole_angle_error,pole_velocity_error,cart_position_error,cart_velocity_error])
    serror=rm.smooth( error, serror, sfactor) 
    
    figures.add_points( ctr, pole_angle_ref, pole_angle, pole_velocity_ref, pole_velocity, 
                   cart_position_ref, cart_position, cart_velocity_ref, cart_velocity, action, sum_error_ma, serror)
       

    return action, serror, sum_error_ma, power
예제 #2
0
def moving_controller(ctr, pole_position_ref, state, gains, slow, figures, position_figure, serror, sfactor, scale, prev_power, plot, cart_position_ref):
    action =1
    cart_position,    cart_velocity ,    pole_angle , pole_velocity =ou.get_obs(state)        
    print(f'{pole_angle:.3f} {pole_velocity:.3f} {cart_position:.3f} {cart_velocity:.3f}')    
    """
    test=0.2
    cart_position=test
    cart_velocity=test 
    pole_angle=test
    pole_velocity=test        
    """
    pole_position_gain, pole_angle_gain,pole_velocity_gain,cart_position_gain,cart_velocity_gain = ou.get_gains(gains)

    pole_position=cart_position+math.sin(pole_angle)
    pole_angle_ref,pole_position_error=sigmoid(pole_position_ref, pole_position, pole_position_gain, scale)
    
    pole_velocity_ref,pole_angle_error=proportional(pole_angle_ref, pole_angle, pole_angle_gain)
    
    cart_position_ref,pole_velocity_error=integrator(pole_velocity_ref, pole_velocity, pole_velocity_gain, slow, cart_position)
    #cart_position_ref,pole_velocity_error=integrator(pole_velocity_ref, pole_velocity, pole_velocity_gain, slow, cart_position_ref)
    
    cart_velocity_ref,cart_position_error=proportional(cart_position_ref, cart_position, cart_position_gain)
    power,cart_velocity_error=proportional(cart_velocity_ref, cart_velocity, cart_velocity_gain)
    power= rm.smooth(power, prev_power, 0.75)
    print(f'pole_position {pole_position_ref:.3f} {pole_position:.3f} {pole_position_error:.3f} {pole_angle_ref:.3f}')    
    print(f'pole_angle {pole_angle_ref:.3f} {pole_angle:.3f} {pole_angle_error:.3f} {pole_velocity_ref:.3f}')    
    print(f'pole_velocity {pole_velocity_ref:.3f} {pole_velocity:.3f} {pole_velocity_error:.3f} {cart_position_ref:.3f}  **')    
    print(f'cart_position {cart_position_ref:.3f} {cart_position:.3f} {cart_position_error:.3f} {cart_velocity_ref:.3f}')    
    print(f'cart_velocity {cart_velocity_ref:.3f} {cart_velocity:.3f} {cart_velocity_error:.3f} {power:.3f}')    

    if power>=0:
        action=0

    print(action)        

        
    error=root_sum_squared_error([pole_angle_error,pole_velocity_error,cart_position_error,cart_velocity_error])
    serror=rm.smooth( error, serror, sfactor) 
    if plot:
        if type(figures)==go.FigureWidget:
            add_cartpolepoints_to_widget(figures, 2, ctr, pole_angle_ref, pole_angle, pole_velocity_ref, pole_velocity, 
                       cart_position_ref, cart_position, cart_velocity_ref, cart_velocity, action, error, serror)        
        else:    
            figures.add_points( ctr, pole_angle_ref, pole_angle, pole_velocity_ref, pole_velocity, 
                       cart_position_ref, cart_position, cart_velocity_ref, cart_velocity, action, error, serror)
        
        if type(position_figure)==go.FigureWidget:        
            add_cartpole_positions_to_widget(position_figure, ctr, pole_position_ref, pole_position)
        else:    
            position_figure.add_points( ctr, pole_position_ref, pole_position)

    return action, serror, pole_position, power, cart_position_ref
예제 #3
0
파일: optimizers.py 프로젝트: ruperty/pctx
    def __call__(self, model):
        current_loss = self.lossfn(model.outputs, model(model.inputs))
        #print(current_loss.numpy())
        self.add_period_loss(current_loss)

        if self.ctr % self.period == 0:
            self.current_historical_loss = self.get_mean_loss()
            #print("m", self.current_historical_loss.numpy(), self.previous_historical_loss)
            if self.current_historical_loss >= self.previous_historical_loss or self.previous_historical_loss < 0:
                self.dWeights = np.random.uniform(-1, 1, self.nweights)

                self.updates = sigmoid(
                    self.current_historical_loss * self.learning_rate *
                    self.dWeights, self.sigmoid_range, self.sigmoid_scale)

                #self.updates = [sigmoid( self.current_historical_loss  *self.learning_rate * self.dWeights[0], self.sigmoid_range, self.sigmoid_scale),
                #       sigmoid( self.current_historical_loss  *self.learning_rate * self.dWeights[1], self.sigmoid_range, self.sigmoid_scale)]

            if self.previous_historical_loss >= 0:
                self.dl = self.current_historical_loss - self.previous_historical_loss
                if self.dlsmooth == None:
                    self.dlsmooth = self.dl
                else:
                    self.dlsmooth = smooth(self.dl, self.dlsmooth,
                                           self.dlsmoothfactor)

            self.previous_historical_loss = self.current_historical_loss
        #else:
        #    self.updates=np.zeros(self.nweights)

        self.previous_loss = current_loss

        self.ctr += 1
        return self.updates
예제 #4
0
파일: cartpole.py 프로젝트: ruperty/pctx
 def get_action(self, power):
     action=0
     power= rm.smooth(power, self.prev_power, 0.75)
     self.prev_power=power
     if power>=0:
       action=1
     
     return action
예제 #5
0
def moving_pole_angle_controller(ctr, pole_angle_ref, state, gains, slow, figures, serror, sfactor, plot):
    action =1
    cart_position,    cart_velocity ,    pole_angle , pole_velocity =ou.get_obs(state)
    pole_angle_gain,pole_velocity_gain,cart_position_gain,cart_velocity_gain = ou.get_gains(gains)
    
    pole_velocity_ref,pole_angle_error=proportional(pole_angle_ref, pole_angle, pole_angle_gain)
    cart_position_ref,pole_velocity_error=integrator(pole_velocity_ref, pole_velocity, pole_velocity_gain, slow, cart_position)
    cart_velocity_ref,cart_position_error=proportional(cart_position_ref, cart_position, cart_position_gain)
    power,cart_velocity_error=proportional(cart_velocity_ref, cart_velocity, cart_velocity_gain)
    if power>=0:
        action=0
        
    error=root_sum_squared_error([pole_angle_error,pole_velocity_error,cart_position_error,cart_velocity_error])
    serror=rm.smooth( error, serror, sfactor) 
    
    if plot:
        figures.add_points( ctr, pole_angle_ref, pole_angle, pole_velocity_ref, pole_velocity, 
                   cart_position_ref, cart_position, cart_velocity_ref, cart_velocity, action, error, serror)
    

    return action, serror
예제 #6
0
파일: optimizers.py 프로젝트: ruperty/pctx
    def __call__(self, model):
        current_loss = self.lossfn(model.outputs, model(model.inputs))
        if self.initial_loss == None:
            self.initial_loss = current_loss

        #print(current_loss.numpy())

        if self.previous_loss > 0:
            self.current_slope = current_loss - self.previous_loss
        else:
            self.current_slope = 0

        self.slope_error = self.ref_slope - self.current_slope

        if self.slope_error < 0:
            self.slope_error_accumulator += self.slope_error

        if self.slope_error_accumulator < self.tumble_threshold:
            self.dWeights = np.random.uniform(-1, 1, self.nweights)
            self.updates = sigmoid(
                current_loss * self.learning_rate * self.dWeights,
                self.sigmoid_range, self.sigmoid_scale)
            self.slope_error_accumulator = 0
            if current_loss < self.initial_loss:
                self.ref_slope = self.initial_ref_slope * current_loss / self.initial_loss
                self.tumble_threshold = self.initial_tumble_threshold * current_loss / self.initial_loss

        if self.previous_loss >= 0:
            if self.dlsmooth == None:
                self.dlsmooth = self.current_slope
            else:
                self.dlsmooth = smooth(self.current_slope, self.dlsmooth,
                                       self.dlsmoothfactor)

        self.previous_loss = current_loss

        return self.updates