예제 #1
0
def get_grasp_gen_fn(task):
    plant = task.mbp
    gripper_frame = get_base_body(plant, task.gripper).body_frame()
    box_from_geom = get_box_from_geom(task.scene_graph)
    pitch = 4 * np.pi / 9
    assert abs(pitch) <= np.pi / 2

    def gen(obj_name):
        obj = plant.GetModelInstanceByName(obj_name)
        obj_aabb, obj_from_box, obj_shape = box_from_geom[
            int(obj), get_base_body(plant, obj).name(), 0]
        if obj_shape == 'cylinder':
            grasp_gen = get_cylinder_grasps(obj_aabb,
                                            pitch_range=(pitch, pitch))
        elif obj_shape == 'box':
            grasp_gen = get_box_grasps(obj_aabb, pitch_range=(pitch, pitch))
        else:
            raise NotImplementedError(obj_shape)
        for gripper_from_box in grasp_gen:
            gripper_from_obj = gripper_from_box.multiply(
                obj_from_box.inverse())
            grasp = Pose(plant, gripper_frame, obj, gripper_from_obj)
            yield (grasp, )

    return gen
예제 #2
0
def get_pose_gen(task, context, collisions=True, shrink=0.025):
    mbp = task.mbp
    world = mbp.world_frame()
    box_from_geom = get_box_from_geom(task.scene_graph)
    fixed = task.fixed_bodies() if collisions else []
    world_from_robot = get_world_pose(task.mbp, context, task.robot)
    max_xy_distance = 0.85

    def gen(obj_name, surface):
        obj = mbp.GetModelInstanceByName(obj_name)
        obj_aabb, obj_from_box, _ = box_from_geom[
            int(obj), get_base_body(mbp, obj).name(), 0]
        collision_pairs = set(product(get_model_bodies(mbp, obj), fixed))

        surface_body = mbp.GetBodyByName(surface.body_name,
                                         surface.model_index)
        surface_pose = get_body_pose(context, surface_body)
        surface_aabb, surface_from_box, _ = box_from_geom[
            int(surface.model_index), surface.body_name, surface.visual_index]

        for surface_box_from_obj_box in sample_aabb_placement(obj_aabb,
                                                              surface_aabb,
                                                              shrink=shrink):
            world_from_obj = surface_pose.multiply(surface_from_box).multiply(
                surface_box_from_obj_box).multiply(obj_from_box.inverse())
            robot_from_obj = world_from_robot.inverse().multiply(
                world_from_obj)
            if max_xy_distance < np.linalg.norm(
                    robot_from_obj.translation()[:2], ord=np.inf):
                continue
            pose = Pose(mbp, world, obj, world_from_obj, surface=surface)
            pose.assign(context)
            if not exists_colliding_pair(task.diagram, task.diagram_context,
                                         task.mbp, task.scene_graph,
                                         collision_pairs):
                yield (pose, )

    return gen
예제 #3
0
def load_station(time_step=0.0, **kwargs):
    station = ManipulationStation(time_step, IiwaCollisionModel.kBoxCollision)
    plant = station.get_mutable_multibody_plant()
    scene_graph = station.get_mutable_scene_graph()
    station.AddCupboard()
    robot = plant.GetModelInstanceByName('iiwa')
    gripper = plant.GetModelInstanceByName('gripper')
    table = plant.GetModelInstanceByName('table')
    cupboard = plant.GetModelInstanceByName('cupboard')

    model_name = 'soup'
    item = AddModelFromSdfFile(file_name=get_sdf_path(model_name),
                               model_name=model_name,
                               plant=plant,
                               scene_graph=scene_graph)
    ceiling = AddModelFromSdfFile(file_name=PLANE_FILE_PATH,
                                  model_name="ceiling",
                                  plant=plant,
                                  scene_graph=scene_graph)
    weld_to_world(plant, ceiling,
                  create_transform(translation=[0.3257, 0, 1.0]))
    station.Finalize()

    diagram, state_machine = build_manipulation_station(station, **kwargs)
    box_from_geom = get_box_from_geom(scene_graph)

    table_body = plant.GetBodyByName('amazon_table', table)
    table_index = 0
    #table_surface = Surface(plant, table, table_body.name(), table_index),
    start_z = get_z_placement(plant, box_from_geom, item, table_body,
                              table_index)

    shelf_body = plant.GetBodyByName('top_and_bottom', cupboard)
    shelf_index = CUPBOARD_SHELVES.index('shelf_lower')
    goal_surface = Surface(plant, cupboard, shelf_body.name(), shelf_index)

    door_names = [
        'left_door',
        #'right_door',
    ]
    doors = [plant.GetBodyByName(name).index() for name in door_names]

    initial_positions = {
        plant.GetJointByName('left_door_hinge'): -DOOR_CLOSED,
        plant.GetJointByName('right_door_hinge'): DOOR_CLOSED,
    }

    initial_conf = [0, 0, 0, -1.75, 0, 1.0, 0]
    initial_positions.update(
        zip(get_movable_joints(plant, robot), initial_conf))

    start_x, start_y, start_theta = 0.4, -0.2, np.pi / 2
    initial_poses = {
        item:
        create_transform(translation=[start_x, start_y, start_z],
                         rotation=[0, 0, start_theta]),
    }

    surfaces = [
        #table_surface,
        goal_surface,
    ]

    task = Task(
        diagram,
        plant,
        scene_graph,
        robot,
        gripper,
        movable=[item],
        surfaces=surfaces,
        doors=doors,
        initial_positions=initial_positions,
        initial_poses=initial_poses,
        #goal_holding=[item],
        goal_on=[(item, goal_surface)],
        #goal_poses=goal_poses,
        reset_robot=True,
        reset_doors=False)
    task.set_initial()
    task.station = station

    return task, diagram, state_machine
예제 #4
0
def get_pull_fn(task,
                context,
                collisions=True,
                max_attempts=25,
                step_size=np.pi / 16,
                approach_distance=0.05):
    box_from_geom = get_box_from_geom(task.scene_graph)
    gripper_frame = get_base_body(task.mbp, task.gripper).body_frame()
    fixed = task.fixed_bodies() if collisions else []

    def fn(robot_name, door_name, door_conf1, door_conf2):
        """
        :param robot_name: The name of the robot (should be iiwa)
        :param door_name: The name of the door (should be left_door or right_door)
        :param door_conf1: The initial door configuration
        :param door_conf2: The final door configuration
        :return: A triplet composed of the initial robot configuration, final robot configuration,
                 and combined robot & door position trajectory to execute the pull
        """
        robot = task.mbp.GetModelInstanceByName(robot_name)
        robot_joints = get_movable_joints(task.mbp, robot)
        collision_pairs = set(
            product(bodies_from_models(task.mbp, [robot, task.gripper]),
                    fixed))
        collision_fn = get_collision_fn(task.diagram,
                                        task.diagram_context,
                                        task.mbp,
                                        task.scene_graph,
                                        robot_joints,
                                        collision_pairs=collision_pairs)

        door_body = task.mbp.GetBodyByName(door_name)
        door_joints = door_conf1.joints
        combined_joints = robot_joints + door_joints
        # The transformation from the door frame to the gripper frame that corresponds to grasping the door handle
        gripper_from_door = get_door_grasp(door_body, box_from_geom)

        extend_fn = get_extend_fn(door_joints,
                                  resolutions=step_size *
                                  np.ones(len(door_joints)))
        door_joint_path = [door_conf1.positions] + list(
            extend_fn(door_conf1.positions, door_conf2.positions))
        door_body_path = get_body_path(door_body, context, door_joints,
                                       door_joint_path)
        gripper_body_path = [
            door_pose.multiply(gripper_from_door.inverse())
            for door_pose in door_body_path
        ]

        for _ in range(max_attempts):
            robot_joint_waypoints = plan_workspace_motion(
                task.mbp,
                robot_joints,
                gripper_frame,
                gripper_body_path,
                collision_fn=collision_fn)
            if robot_joint_waypoints is None:
                continue
            combined_waypoints = [
                list(rq) + list(dq)
                for rq, dq in zip(robot_joint_waypoints, door_joint_path)
            ]
            combined_joint_path = plan_waypoints_joint_motion(
                combined_joints,
                combined_waypoints,
                collision_fn=lambda q: False)
            if combined_joint_path is None:
                continue

            # combined_joint_path is a joint position path for the concatenated robot and door joints.
            # It should be a list of 8 DOF configurations (7 robot DOFs + 1 door DOF).
            # Additionally, combined_joint_path[0][len(robot_joints):] should equal door_conf1.positions
            # and combined_joint_path[-1][len(robot_joints):] should equal door_conf2.positions.

            robot_conf1 = Conf(robot_joints,
                               combined_joint_path[0][:len(robot_joints)])
            robot_conf2 = Conf(robot_joints,
                               combined_joint_path[-1][:len(robot_joints)])
            traj = Trajectory(
                Conf(combined_joints, combined_conf)
                for combined_conf in combined_joint_path)
            yield (robot_conf1, robot_conf2, traj)

    return fn