def demo_ff_planning(env_name, wrapper_args, num_problems, render=True, test=False, verbose=True): gym_name = env_name.capitalize() if test: gym_name += "Test" env = gym.make("PDDLEnv{}-v0".format(gym_name)) if not render: env._render = None env = ProbabilisticWrapper(env, *wrapper_args) for problem_index in range(num_problems): env.fix_problem_index(problem_index) run_planning_demo(env, 'ff', verbose=verbose, check_reward=False)
def demo_ff_planning(env_name, num_problems, render=True, test=False, verbose=True): gym_name = env_name.capitalize() if test: gym_name += "Test" env = gym.make("PDDLEnv{}-v0".format(gym_name)) if not render: env._render = None for problem_index in range(num_problems): env.fix_problem_index(problem_index) run_planning_demo(env, 'ff', verbose=verbose)