def main(focused=True, unit_costs=False): problem_fn = get_shift_one_problem # get_shift_one_problem | get_shift_all_problem tamp_problem = problem_fn() print(tamp_problem) pddlstream_problem = pddlstream_from_tamp(tamp_problem) if focused: solution = solve_focused(pddlstream_problem, unit_costs=unit_costs) else: #solution = solve_exhaustive(pddlstream_problem, unit_costs=unit_costs) solution = solve_incremental(pddlstream_problem, unit_costs=unit_costs) print_solution(solution) plan, cost, evaluations = solution if plan is None: return print(evaluations) colors = dict(zip(tamp_problem.initial.block_poses, COLORS)) viewer = DiscreteTAMPViewer(1, len(tamp_problem.poses), title='Initial') state = tamp_problem.initial print(state) draw_state(viewer, state, colors) for action in plan: user_input('Continue?') state = apply_action(state, action) print(state) draw_state(viewer, state, colors) user_input('Finish?')
def solve_pddlstream(focused=True): pddlstream_problem = get_problem() if focused: solution = solve_focused(pddlstream_problem, unit_costs=True) else: #solution = solve_exhaustive(pddlstream_problem, unit_costs=True) solution = solve_incremental(pddlstream_problem, unit_costs=True) print_solution(solution)
def solve_pddlstream(focused=True): problem_fn = get_problem1 # get_problem1 | get_problem2 pddlstream_problem = problem_fn() print('Init:', pddlstream_problem.init) print('Goal:', pddlstream_problem.goal) if focused: solution = solve_focused(pddlstream_problem, unit_costs=True) else: solution = solve_incremental(pddlstream_problem, unit_costs=True) print_solution(solution)
def main(focused=True): # TODO: maybe load problems as a domain explicitly pddlstream_problem = pddlstream_from_belief() _, _, _, _, init, goal = pddlstream_problem print(sorted(init, key=lambda f: f[0])) print(goal) pr = cProfile.Profile() pr.enable() if focused: solution = solve_focused(pddlstream_problem, unit_costs=False) else: #solution = solve_exhaustive(pddlstream_problem, unit_costs=False) solution = solve_incremental(pddlstream_problem, unit_costs=False) print_solution(solution) pr.disable() pstats.Stats(pr).sort_stats('tottime').print_stats(10)
def main(max_time=20): """ Creates and solves the 2D motion planning problem. """ obstacles = [create_box((.5, .5), (.2, .2))] regions = { 'env': create_box((.5, .5), (1, 1)), #'goal': create_box((.8, .8), (.4, .4)), } goal = np.array([.65, .65]) # goal = 'goal' max_distance = 0.25 # 0.2 | 0.25 | 0.5 | 1.0 problem, roadmap = create_problem(goal, obstacles, regions, max_distance=max_distance) pr = cProfile.Profile() pr.enable() solution = solve_incremental(problem, unit_costs=False, max_cost=0, max_time=max_time, verbose=False) pr.disable() pstats.Stats(pr).sort_stats('tottime').print_stats(10) print_solution(solution) plan, cost, evaluations = solution print('Plan:', plan) if plan is None: return # TODO: use the same viewer here draw_roadmap(roadmap, obstacles, regions) # TODO: do this in realtime user_input('Continue?') segments = [args for name, args in plan] draw_solution(segments, obstacles, regions) user_input('Finish?')
def main(deterministic=False, observable=False, collisions=True, focused=True, factor=True): # TODO: global search over the state belief_problem = get_belief_problem(deterministic, observable) pddlstream_problem = to_pddlstream(belief_problem, collisions) pr = cProfile.Profile() pr.enable() planner = 'ff-wastar1' if focused: stream_info = { 'GE': StreamInfo(from_test(ge_fn), eager=False), 'prob-after-move': StreamInfo(from_fn(get_opt_move_fn(factor=factor))), 'MoveCost': FunctionInfo(move_cost_fn), 'prob-after-look': StreamInfo(from_fn(get_opt_obs_fn(factor=factor))), 'LookCost': FunctionInfo(get_look_cost_fn(p_look_fp=0, p_look_fn=0)), } solution = solve_focused(pddlstream_problem, stream_info=stream_info, planner=planner, debug=False, max_cost=0, unit_costs=False, max_time=30) else: solution = solve_incremental(pddlstream_problem, planner=planner, debug=True, max_cost=MAX_COST, unit_costs=False, max_time=30) pr.disable() pstats.Stats(pr).sort_stats('tottime').print_stats(10) print_solution(solution) plan, cost, init = solution print('Real cost:', float(cost) / SCALE_COST)
def main(): uniform_rooms = UniformDist(['room0', OTHER]) #uniform_tables = UniformDist(['table0', 'table1']) #uniform_tables = UniformDist(['table0', OTHER]) uniform_tables = UniformDist(['table0', 'table1', OTHER]) #initial_belief = get_room_belief(uniform_rooms, uniform_tables, 1.0) initial_belief = get_room_belief(uniform_rooms, uniform_tables, 0.2) #initial_belief = get_table_belief(uniform_tables, 1.0) #initial_belief = get_table_belief(uniform_tables, 0.2) #initial_belief = get_item_belief() pddlstream_problem = pddlstream_from_belief(initial_belief) _, _, _, _, init, goal = pddlstream_problem print(sorted(init)) print(goal) pr = cProfile.Profile() pr.enable() solution = solve_incremental(pddlstream_problem, unit_costs=False) print_solution(solution) pr.disable() pstats.Stats(pr).sort_stats('tottime').print_stats(10)
def main(focused=True, deterministic=False, unit_costs=False): np.set_printoptions(precision=2) if deterministic: seed = 0 np.random.seed(seed) print('Seed:', get_random_seed()) problem_fn = get_blocked_problem # get_tight_problem | get_blocked_problem tamp_problem = problem_fn() print(tamp_problem) action_info = { #'move': ActionInfo(terminal=True), #'pick': ActionInfo(terminal=True), #'place': ActionInfo(terminal=True), } stream_info = { #'test-region': StreamInfo(eager=True, p_success=0), # bound_fn is None #'plan-motion': StreamInfo(p_success=1), # bound_fn is None #'trajcollision': StreamInfo(p_success=1), # bound_fn is None #'cfree': StreamInfo(eager=True), } dynamic = [ StreamSynthesizer('cfree-motion', { 'plan-motion': 1, 'trajcollision': 0 }, gen_fn=from_fn(cfree_motion_fn)), #StreamSynthesizer('optimize', {'sample-pose': 1, 'inverse-kinematics': 1, # 'posecollision': 0, 'distance': 0}, # gen_fn=from_fn(get_optimize_fn(tamp_problem.regions))), ] pddlstream_problem = pddlstream_from_tamp(tamp_problem) pr = cProfile.Profile() pr.enable() if focused: solution = solve_focused(pddlstream_problem, action_info=action_info, stream_info=stream_info, synthesizers=dynamic, max_time=10, max_cost=INF, debug=False, effort_weight=None, unit_costs=unit_costs, postprocess=False, visualize=False) else: solution = solve_incremental(pddlstream_problem, layers=1, unit_costs=unit_costs) print_solution(solution) plan, cost, evaluations = solution pr.disable() pstats.Stats(pr).sort_stats('tottime').print_stats(10) if plan is None: return colors = dict(zip(sorted(tamp_problem.initial.block_poses.keys()), COLORS)) viewer = ContinuousTMPViewer(tamp_problem.regions, title='Continuous TAMP') state = tamp_problem.initial print() print(state) draw_state(viewer, state, colors) for i, action in enumerate(plan): user_input('Continue?') print(i, *action) state = apply_action(state, action) print(state) draw_state(viewer, state, colors) user_input('Finish?')