예제 #1
0
def pddlstream_from_problem(problem, teleport=False, movable_collisions=False):
    robot = problem.robot

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}

    #initial_bq = Pose(robot, get_pose(robot))
    initial_bq = Conf(robot, get_group_joints(robot, 'base'), get_group_conf(robot, 'base'))
    init = [
        ('CanMove',),
        ('BConf', initial_bq),
        ('AtBConf', initial_bq),
        Equal(('PickCost',), scale_cost(1)),
        Equal(('PlaceCost',), scale_cost(1)),
    ] + [('Sink', s) for s in problem.sinks] + \
           [('Stove', s) for s in problem.stoves] + \
           [('Connected', b, d) for b, d in problem.buttons] + \
           [('Button', b) for b, _ in problem.buttons]
    for arm in ARM_NAMES:
    #for arm in problem.arms:
        joints = get_arm_joints(robot, arm)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        init += [('Arm', arm), ('AConf', arm, conf), ('HandEmpty', arm), ('AtAConf', arm, conf)]
        if arm in problem.arms:
            init += [('Controllable', arm)]
    for body in problem.movable:
        pose = Pose(body, get_pose(body))
        init += [('Graspable', body), ('Pose', body, pose),
                 ('AtPose', body, pose)]
        for surface in problem.surfaces:
            init += [('Stackable', body, surface)]
            if is_placement(body, surface):
                init += [('Supported', body, pose, surface)]

    goal = [AND]
    if problem.goal_conf is not None:
        goal_conf = Pose(robot, problem.goal_conf)
        init += [('BConf', goal_conf)]
        goal += [('AtBConf', goal_conf)]
    goal += [('Holding', a, b) for a, b in problem.goal_holding] + \
                     [('On', b, s) for b, s in problem.goal_on] + \
                     [('Cleaned', b)  for b in problem.goal_cleaned] + \
                     [('Cooked', b)  for b in problem.goal_cooked]

    stream_map = {
        'sample-pose': get_stable_gen(problem),
        'sample-grasp': from_list_fn(get_grasp_gen(problem)),
        'inverse-kinematics': from_gen_fn(get_ik_ir_gen(problem, teleport=teleport)),
        'plan-base-motion': from_fn(get_motion_gen(problem, teleport=teleport)),
        'MoveCost': move_cost_fn,
        'TrajPoseCollision': fn_from_constant(False),
        'TrajArmCollision': fn_from_constant(False),
        'TrajGraspCollision': fn_from_constant(False),
    }
    if USE_SYNTHESIZERS:
        stream_map['plan-base-motion'] = empty_gen(),
    # get_press_gen(problem, teleport=teleport)

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #2
0
def pddlstream_from_belief(initial_belief):
    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    constant_map = {}
    stream_pddl = None
    stream_map = {}

    init = [
        #('CanMove',),
        Equal(('RegisterCost', ), 1),
        Equal(('PickCost', ), 1),  # TODO: imperfect transition model
        Equal(('PlaceCost', ), 1),
    ]

    for item, dist in initial_belief.items():
        support = dist.support()
        if len(support) == 1:
            init += [('On', item, support[0]), ('Localized', item)]
        else:
            init += [('Unknown', item)]
            for i2 in support:
                p_obs = dist.prob(i2)
                cost = revisit_mdp_cost(
                    1, 1, p_obs)  # TODO: imperfect observation model
                if cost == INF:
                    continue
                if i2 in initial_belief:
                    init += [('FiniteScanCost', i2, item),
                             Equal(('ScanCost', i2, item), cost)]

    graspable_classes = [SOUP, GREEN]
    for item in initial_belief:
        for cl in filter(lambda c: is_class(item, c), CLASSES):
            init += [('Class', item, cl)]
            if cl in graspable_classes:
                init += [('Graspable', item)]  # TODO: include hand?

    stackable_classes = [(TABLE, ROOM), (SOUP, TABLE), (GREEN, TABLE)]
    for cl1, cl2 in stackable_classes:
        for i1 in filter(lambda i: is_class(i, cl1), initial_belief):
            for i2 in filter(lambda i: is_class(i, cl2), initial_belief):
                init += [('Stackable', i1, i2)]

    arms = ['left', 'right']
    for arm in arms:
        init += [('Arm', arm), ('HandEmpty', arm)]

    goal_literals = [('On', 'soup0', 'table1'), ('Registered', 'soup0'),
                     ('HoldingClass', 'green')]
    #goal_literals = [('Holding', 'left', 'soup0')]
    #goal_literals = [('HoldingClass', soup)]
    #goal_literals = [Nearby('table1')]
    #goal_literals = [('HoldingClass', 'green'), ('HoldingClass', 'soup')]
    goal = And(*goal_literals)

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #3
0
def create_problem(tamp_problem, hand_empty=False, manipulate_cost=1.):
    initial = tamp_problem.initial
    assert (not initial.holding)

    init = [
       #('Region', GROUND_NAME),
       Equal(('Cost',), manipulate_cost),
       Equal((TOTAL_COST,), 0)] + \
           [('Stove', r) for r in STOVE_NAMES if r in tamp_problem.regions] + \
           [('Placeable', b, r) for b in initial.block_poses.keys()
            for r in tamp_problem.regions if (r in ENVIRONMENT_NAMES) or
            ((b in tamp_problem.goal_cooked) and (r in STOVE_NAMES))]

    for b, p in initial.block_poses.items():
        init += [
            ('Block', b),
            ('Pose', b, p),
            ('AtPose', b, p),
            #('Grasp', b, GRASP),
        ]

    goal_literals = [] + \
                    [('Cooked', b) for b in tamp_problem.goal_cooked] # Placeable for the stove
    for b, r in tamp_problem.goal_regions.items():
        if isinstance(r, np.ndarray):
            init += [('Pose', b, r)]
            goal_literals += [('AtPose', b, r)]
        else:
            blocks = [b] if isinstance(b, str) else b
            regions = [r] if isinstance(r, str) else r
            conditions = []
            for body, region in product(blocks, regions):
                init += [('Region', region), ('Placeable', body, region)]
                conditions += [('In', body, region)]
            goal_literals.append(Or(*conditions))

    for r, q in initial.robot_confs.items():
        init += [
            ('Robot', r),
            ('CanMove', r),
            ('Conf', q),
            ('AtConf', r, q),
            ('HandEmpty', r),
        ]
        if hand_empty:
            goal_literals += [('HandEmpty', r)]
        if tamp_problem.goal_conf is not None:
            # goal_literals += [('AtConf', tamp_problem.goal_conf)]
            goal_literals += [('AtConf', r, q)]

    # goal_literals += [Not(('Unsafe',))] # ('HandEmpty',)
    goal = And(*goal_literals)

    return init, goal
예제 #4
0
def create_problem(tamp_problem):
    initial = tamp_problem.initial
    assert (not initial.holding)

    init = [
       #('Region', GROUND_NAME),
       Equal(('Cost',), 0),
       Equal((TOTAL_COST,), 0)] + \
           [('Stove', r) for r in STOVE_NAMES if r in tamp_problem.regions] + \
           [('Placeable', b, r) for b in initial.block_poses.keys()
            for r in tamp_problem.regions if (r in ENVIRONMENT_NAMES) or
            ((b in tamp_problem.goal_cooked) and (r in STOVE_NAMES))]

    for b, p in initial.block_poses.items():
        init += [
            ('Block', b),
            ('Pose', b, p),
            ('AtPose', b, p),
            ('Grasp', b, GRASP),
        ]

    goal_literals = [] + \
                    [('Cooked', b) for b in tamp_problem.goal_cooked] # Placeable for the stove
    for b, r in tamp_problem.goal_regions.items():
        if isinstance(r, str):
            init += [('Region', r), ('Placeable', b, r)]
            goal_literals += [('In', b, r)]
        elif isinstance(r, list):
            for region in r:
                init += [('Region', region), ('Placeable', b, region)]
            goal_literals.append(Or(*[('In', b, region) for region in r]))
        else:
            init += [('Pose', b, r)]
            goal_literals += [('AtPose', b, r)]

    for r, q in initial.robot_confs.items():
        init += [
            ('Robot', r),
            ('CanMove', r),
            ('Conf', q),
            ('AtConf', r, q),
            ('HandEmpty', r),
        ]
        if tamp_problem.goal_conf is not None:
            # goal_literals += [('AtConf', tamp_problem.goal_conf)]
            goal_literals += [('AtConf', r, q)]

    # goal_literals += [Not(('Unsafe',))] # ('HandEmpty',)
    goal = And(*goal_literals)

    return init, goal
예제 #5
0
def fact_from_evaluation(evaluation):
    fact = Fact(evaluation.head.function, evaluation.head.args)
    if is_atom(evaluation):
        return fact
    elif is_negated_atom(evaluation):
        return Not(fact)
    return Equal(fact, evaluation.value)
예제 #6
0
def pddlstream_from_tamp(tamp_problem):
    initial = tamp_problem.initial
    assert (initial.holding is None)

    known_poses = list(initial.block_poses.values()) + \
                  list(tamp_problem.goal_poses.values())

    directory = os.path.dirname(os.path.abspath(__file__))
    domain_pddl = read(os.path.join(directory, 'domain_push.pddl'))
    stream_pddl = read(os.path.join(directory, 'stream_push.pddl'))
    constant_map = {}

    init = [
        ('CanMove',),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', p) for p in known_poses] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('GoalPose', p) for p in tamp_problem.goal_poses.values()]

    goal = And(('AtConf', initial.conf),
               *[('AtPose', b, p) for b, p in tamp_problem.goal_poses.items()])

    # TODO: convert to lower case
    stream_map = {
        'push-target': from_list_fn(push_target_fn),
        'push-direction': push_direction_gen_fn,
        'test-cfree': from_test(lambda *args: not collision_test(*args)),
        'distance': distance_fn,
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #7
0
def pddlstream_from_tamp(tamp_problem, use_stream=True, use_optimizer=False, collisions=True):
    initial = tamp_problem.initial
    assert(initial.holding is None)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    external_paths = []
    if use_stream:
        external_paths.append(get_file_path(__file__, 'stream.pddl'))
    if use_optimizer:
        external_paths.append(get_file_path(__file__, 'optimizer.pddl'))
    external_pddl = [read(path) for path in external_paths]

    constant_map = {}

    init = [
        ('CanMove',),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', b, p) for b, p in initial.block_poses.items()] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('Placeable', b, GROUND_NAME) for b in initial.block_poses.keys()] + \
           [('Placeable', b, r) for b, r in tamp_problem.goal_regions.items()] + \
           [('Region', r) for r in tamp_problem.goal_regions.values() + [GROUND_NAME]]

    goal_literals = [('In', b, r) for b, r in tamp_problem.goal_regions.items()] #+ [('HandEmpty',)]

    if tamp_problem.goal_conf is not None:
        goal_literals += [('AtConf', tamp_problem.goal_conf)]
    goal = And(*goal_literals)

    stream_map = {
        's-motion': from_fn(plan_motion),
        's-region': from_gen_fn(get_pose_gen(tamp_problem.regions)),
        't-region': from_test(get_region_test(tamp_problem.regions)),
        's-ik': from_fn(inverse_kin_fn),
        #'s-ik': from_gen_fn(unreliable_ik_fn),
        'distance': distance_fn,

        't-cfree': from_test(lambda *args: implies(collisions, not collision_test(*args))),
        #'posecollision': collision_test, # Redundant
        'trajcollision': lambda *args: False,
    }
    if use_optimizer:
        stream_map.update({
            'gurobi': from_fn(get_optimize_fn(tamp_problem.regions)),
            'rrt': from_fn(cfree_motion_fn),
        })
    #stream_map = 'debug'

    return PDDLProblem(domain_pddl, constant_map, external_pddl, stream_map, init, goal)
예제 #8
0
def pddlstream_from_tamp(tamp_problem):
    initial = tamp_problem.initial
    assert(initial.holding is None)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    external_pddl = [
        read(get_file_path(__file__, 'stream.pddl')),
        #read(get_file_path(__file__, 'optimizer.pddl')),
    ]
    constant_map = {}

    init = [
        ('CanMove',),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', b, p) for b, p in initial.block_poses.items()] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('Placeable', b, GROUND_NAME) for b in initial.block_poses.keys()] + \
           [('Placeable', b, r) for b, r in tamp_problem.goal_regions.items()]

    goal_literals = [('In', b, r) for b, r in tamp_problem.goal_regions.items()] #+ [('HandEmpty',)]

    if tamp_problem.goal_conf is not None:
        goal_literals += [('AtConf', tamp_problem.goal_conf)]
    goal = And(*goal_literals)

    stream_map = {
        's-motion': from_fn(plan_motion),
        's-region': from_gen_fn(get_pose_gen(tamp_problem.regions)),
        't-region': from_test(get_region_test(tamp_problem.regions)),
        's-ik': from_fn(inverse_kin_fn),
        'distance': distance_fn,

        't-cfree': from_test(lambda *args: not collision_test(*args)),
        'posecollision': collision_test, # Redundant
        'trajcollision': lambda *args: False,
        'gurobi': from_fn(get_optimize_fn(tamp_problem.regions)),
        'rrt': from_fn(cfree_motion_fn),
        #'reachable': from_test(reachable_test),
        #'Valid': valid_state_fn,
    }
    #stream_map = 'debug'

    return PDDLProblem(domain_pddl, constant_map, external_pddl, stream_map, init, goal)
예제 #9
0
파일: run.py 프로젝트: yijiangh/pddlstream
def pddlstream_from_tamp(tamp_problem):
    initial = tamp_problem.initial
    assert (initial.holding is None)

    known_poses = list(initial.block_poses.values()) + \
                  list(tamp_problem.goal_poses.values())

    directory = os.path.dirname(os.path.abspath(__file__))
    domain_pddl = read(os.path.join(directory, 'domain.pddl'))
    stream_pddl = read(os.path.join(directory, 'stream.pddl'))

    q100 = np.array([100, 100])
    constant_map = {
        'q100': q100,  # As an example
    }

    init = [
        #Type(q100, 'conf'),
        ('CanMove',),
        ('Conf', q100),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', p) for p in known_poses] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()]
    # [('Pose', p) for p in known_poses + tamp_problem.poses] + \

    goal = And(*[('AtPose', b, p) for b, p in tamp_problem.goal_poses.items()])

    # TODO: convert to lower case
    stream_map = {
        #'sample-pose': from_gen_fn(lambda: ((np.array([x, 0]),) for x in range(len(poses), n_poses))),
        'sample-pose':
        from_gen_fn(lambda: ((p, ) for p in tamp_problem.poses)),
        'inverse-kinematics': from_fn(lambda p: (p + GRASP, )),
        'test-cfree': from_test(lambda *args: not collision_test(*args)),
        #'test-cfree': from_gen_fn(noisy_collision_gen_fn),
        'collision': collision_test,
        #'constraint-solver': None,
        'distance': distance_fn,
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #10
0
파일: run.py 프로젝트: syc7446/pddlstream
def create_problem(tamp_problem):
    initial = tamp_problem.initial
    assert (not initial.holding)

    init = [
       ('Region', GROUND_NAME),
       Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', b, p) for b, p in initial.block_poses.items()] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('Placeable', b, GROUND_NAME) for b in initial.block_poses.keys()]
    #[('Grasp', b, GRASP) for b in initial.block_poses]

    goal_literals = []
    for b, r in tamp_problem.goal_regions.items():
        if isinstance(r, str):
            init += [('Region', r), ('Placeable', b, r)]
            goal_literals += [('In', b, r)]
        else:
            init += [('Pose', b, r)]
            goal_literals += [('AtPose', b, r)]

    for r, q in initial.robot_confs.items():
        init += [
            ('Robot', r),
            ('CanMove', r),
            ('Conf', q),
            ('AtConf', r, q),
            ('HandEmpty', r),
        ]
        if tamp_problem.goal_conf is not None:
            # goal_literals += [('AtConf', tamp_problem.goal_conf)]
            goal_literals += [('AtConf', r, q)]

    # goal_literals += [Not(('Unsafe',))] # ('HandEmpty',)
    goal = And(*goal_literals)

    return init, goal
예제 #11
0
 def certified(self):
     if self._certified is None:
         self._certified = [Equal(self.instance.head, self.value)]
     return self._certified
예제 #12
0
def pddlstream_from_state(state, teleport=False):
    task = state.task
    robot = task.robot
    # TODO: infer open world from task

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {
        'base': 'base',
        'left': 'left',
        'right': 'right',
        'head': 'head',
    }

    #base_conf = state.poses[robot]
    base_conf = Conf(robot, get_group_joints(robot, 'base'),
                     get_group_conf(robot, 'base'))
    scan_cost = 1
    init = [
        ('BConf', base_conf),
        ('AtBConf', base_conf),
        Equal(('MoveCost', ), 1),
        Equal(('PickCost', ), 1),
        Equal(('PlaceCost', ), 1),
        Equal(('ScanCost', ), scan_cost),
        Equal(('RegisterCost', ), 1),
    ]
    holding_arms = set()
    holding_bodies = set()
    for attach in state.attachments.values():
        holding_arms.add(attach.arm)
        holding_bodies.add(attach.body)
        init += [('Grasp', attach.body, attach.grasp),
                 ('AtGrasp', attach.arm, attach.body, attach.grasp)]
    for arm in ARM_NAMES:
        joints = get_arm_joints(robot, arm)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        init += [('Arm', arm), ('AConf', arm, conf), ('AtAConf', arm, conf)]
        if arm in task.arms:
            init += [('Controllable', arm)]
        if arm not in holding_arms:
            init += [('HandEmpty', arm)]
    for body in task.get_bodies():
        if body in holding_bodies:
            continue
        # TODO: no notion whether observable actually corresponds to the correct thing
        pose = state.poses[body]
        init += [
            ('Pose', body, pose),
            ('AtPose', body, pose),
            ('Observable', pose),
        ]

    init += [('Scannable', body) for body in task.rooms + task.surfaces]
    init += [('Registerable', body) for body in task.movable]
    init += [('Graspable', body) for body in task.movable]
    for body in task.get_bodies():
        supports = task.get_supports(body)
        if supports is None:
            continue
        for surface in supports:
            p_obs = state.b_on[body].prob(surface)
            cost = revisit_mdp_cost(0, scan_cost,
                                    p_obs)  # TODO: imperfect observation model
            init += [('Stackable', body, surface),
                     Equal(('LocalizeCost', surface, body), clip_cost(cost))]
            #if is_placement(body, surface):
            if is_center_stable(body, surface):
                if body in holding_bodies:
                    continue
                pose = state.poses[body]
                init += [('Supported', body, pose, surface)]

    for body in task.get_bodies():
        if state.is_localized(body):
            init.append(('Localized', body))
        else:
            init.append(('Uncertain', body))
        if body in state.registered:
            init.append(('Registered', body))

    goal = And(*[('Holding', a, b) for a, b in task.goal_holding] + \
           [('On', b, s) for b, s in task.goal_on] + \
           [('Localized', b) for b in task.goal_localized] + \
           [('Registered', b) for b in task.goal_registered])

    stream_map = {
        'sample-pose':
        get_stable_gen(task),
        'sample-grasp':
        from_list_fn(get_grasp_gen(task)),
        'inverse-kinematics':
        from_gen_fn(get_ik_ir_gen(task, teleport=teleport)),
        'plan-base-motion':
        from_fn(get_motion_gen(task, teleport=teleport)),
        'test-vis-base':
        from_test(get_in_range_test(task, VIS_RANGE)),
        'test-reg-base':
        from_test(get_in_range_test(task, REG_RANGE)),
        'sample-vis-base':
        accelerate_list_gen_fn(from_gen_fn(get_vis_base_gen(task, VIS_RANGE)),
                               max_attempts=25),
        'sample-reg-base':
        accelerate_list_gen_fn(from_gen_fn(get_vis_base_gen(task, REG_RANGE)),
                               max_attempts=25),
        'inverse-visibility':
        from_fn(get_inverse_visibility_fn(task)),
    }

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                       init, goal)
예제 #13
0
def get_pddlstream(robots,
                   static_obstacles,
                   node_points,
                   element_bodies,
                   ground_nodes,
                   layer_from_n,
                   initial_confs={},
                   printed=set(),
                   removed=set(),
                   additional_init=[],
                   additional_orders=set(),
                   trajectories=[],
                   temporal=True,
                   sequential=False,
                   local=False,
                   can_print=True,
                   can_transit=False,
                   checker=None,
                   **kwargs):
    try:
        get_tfd_path()
    except RuntimeError:
        temporal = False
        print(
            'Temporal Fast Downward is not installed. Disabling temporal planning.'
        )
    # TODO: TFD submodule
    assert not removed & printed
    remaining = set(element_bodies) - removed - printed
    element_obstacles = {element_bodies[e] for e in printed}
    obstacles = set(static_obstacles) | element_obstacles
    max_layer = max(layer_from_n.values())

    directions = compute_directions(remaining, layer_from_n)
    if local:
        # makespan seems more effective than CEA
        partial_orders = compute_local_orders(
            remaining, layer_from_n)  # makes the makespan heuristic slow
    else:
        partial_orders = compute_global_orders(remaining, layer_from_n)
    partial_orders.update(additional_orders)
    # draw_model(supporters, node_points, ground_nodes, color=RED)
    # wait_if_gui()

    domain_pddl = read(
        get_file_path(
            __file__,
            os.path.join('pddl',
                         'temporal.pddl' if temporal else 'domain.pddl')))
    stream_pddl = read(get_file_path(__file__, 'pddl/stream.pddl'))
    constant_map = {}

    # TODO: don't evaluate TrajTrajCollision until the plan is retimed
    stream_map = {
        #'test-cfree': from_test(get_test_cfree(element_bodies)),
        #'sample-print': from_gen_fn(get_print_gen_fn(robot, obstacles, node_points, element_bodies, ground_nodes)),
        'sample-move':
        get_wild_move_gen_fn(robots,
                             obstacles,
                             element_bodies,
                             partial_orders=partial_orders,
                             **kwargs),
        'sample-print':
        get_wild_print_gen_fn(robots,
                              obstacles,
                              node_points,
                              element_bodies,
                              ground_nodes,
                              initial_confs=initial_confs,
                              partial_orders=partial_orders,
                              removed=removed,
                              **kwargs),
        #'test-stiffness': from_test(test_stiffness),
        #'test-cfree-traj-conf': from_test(lambda *args: True),
        #'test-cfree-traj-traj': from_test(get_cfree_test(**kwargs)),
        'TrajTrajCollision':
        get_collision_test(robots, **kwargs),
        'TrajConfCollision':
        lambda *args, **kwargs:
        False,  # TODO: could treat conf as length 1 traj
        'Length':
        lambda e: get_element_length(e, node_points),
        'Distance':
        lambda r, t: t.get_link_distance(),
        'Duration':
        lambda r, t: t.get_link_distance() / TOOL_VELOCITY,
        'Euclidean':
        lambda n1, n2: get_element_length((n1, n2), node_points),
    }

    assignments = compute_assignments(robots, remaining, node_points,
                                      initial_confs)
    transits = compute_transits(layer_from_n, directions)

    init = [
        ('Stationary', ),
        Equal(('Speed', ), TOOL_VELOCITY),
    ]
    init.extend(additional_init)
    if can_print:
        init.append(('Print', ))
    if can_transit:
        init.append(('Move', ))
    if sequential:
        init.append(('Sequential', ))
    for name, conf in initial_confs.items():
        robot = index_from_name(robots, name)
        #init_node = -robot
        init_node = '{}-q0'.format(robot)
        init.extend([
            #('Node', init_node),
            ('BackoffConf', name, conf),
            ('Robot', name),
            ('Conf', name, conf),
            ('AtConf', name, conf),
            ('Idle', name),
            #('CanMove', name),
            #('Start', name, init_node, None, conf),
            #('End', name, None, init_node, conf),
        ])
        for (n1, e, n2) in directions:
            if layer_from_n[n1] == 0:
                transits.append((None, init_node, n1, e))
            if layer_from_n[n2] == max_layer:
                transits.append((e, n2, init_node, None))

    #init.extend(('Grounded', n) for n in ground_nodes)
    init.extend(('Direction', ) + tup for tup in directions)
    init.extend(('Order', ) + tup for tup in partial_orders)
    # TODO: can relax assigned if I go by layers
    init.extend(
        ('Assigned', r, e) for r in assignments for e in assignments[r])
    #init.extend(('Transit',) + tup for tup in transits)
    # TODO: only move actions between adjacent layers

    for e in remaining:
        n1, n2 = e
        #n1, n2 = ['n{}'.format(i) for i in e]
        init.extend([
            ('Node', n1),
            ('Node', n2),
            ('Element', e),
            ('Printed', e),
        ])

    assert not trajectories
    # for t in trajectories:
    #     init.extend([
    #         ('Traj', t),
    #         ('PrintAction', t.n1, t.element, t),
    #     ])

    goal_literals = []
    if can_transit:
        goal_literals.extend(
            ('AtConf', r, q) for r, q in initial_confs.items())
    goal_literals.extend(('Removed', e) for e in remaining)
    goal = And(*goal_literals)

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                       init, goal)
예제 #14
0
 def get_certified(self):
     return [Equal(self.instance.get_head(), self.value)]
예제 #15
0
파일: run.py 프로젝트: Khodeir/pddlstream
def pddlstream_from_problem(problem, teleport=False):
    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {'{}'.format(name).lower(): name
                    for name in problem.initial_confs.keys()}

    edges = set()
    init = [
    ]
    for name, conf in problem.initial_confs.items():
        init += [
            ('Safe',),
            ('Robot', name),
            ('Conf', conf),
            ('AtConf', name, conf),
            Equal(('Speed', name), DIST_PER_TIME),
            Equal(('BatteryCapacity', name), MAX_ENERGY),
            Equal(('RechargeRate', name), CHARGE_PER_TIME),
            Equal(('ConsumptionRate', name), BURN_PER_TIME),
            Equal(('Energy', name), INITIAL_ENERGY),
        ]

    goal_literals = [
        #('Safe',),
        #('Unachievable',),
    ]

    for name, base_values in problem.goal_confs.items():
        body = problem.get_body(name)
        joints = get_base_joints(body)
        #extend_fn = get_extend_fn(body, joints, resolutions=5*BASE_RESOLUTIONS)
        #q_init = problem.initial_confs[name]
        #path = [q_init] + [Conf(body, joints, q) for q in extend_fn(q_init.values, base_values)]
        #edges.update(zip(path, path[1:]))
        #q_goal = path[-1]
        q_goal = Conf(body, joints, base_values)
        init += [('Conf', q_goal)]
        goal_literals += [('AtConf', name, q_goal)]
    goal_formula = And(*goal_literals)

    robot = list(map(problem.get_body, problem.initial_confs))[0]
    with LockRenderer():
        init += [('Conf', q) for _, n, q in create_vertices(problem, robot, [], samples_per_ft2=6)]

    #vertices = {v for edge in edges for v in edge}
    #handles = []
    #for vertex in vertices:
    #    handles.extend(draw_point(point_from_conf(vertex.values), size=0.05))

    #for conf1, conf2 in edges:
    #    traj = linear_trajectory(conf1, conf2)
    #    init += [
    #        ('Conf', conf1),
    #        ('Traj', traj),
    #        ('Conf', conf2),
    #        ('Motion', conf1, traj, conf2),
    #    ]
    #draw_edges(edges)

    cfree_traj_traj_test = get_test_cfree_traj_traj(problem)
    cfree_traj_traj_list_gen_fn = from_test(cfree_traj_traj_test)
    traj_traj_collision_test = negate_test(cfree_traj_traj_test)
    stream_map = {
        'test-cfree-conf-conf': cfree_traj_traj_list_gen_fn,
        'test-cfree-traj-conf': cfree_traj_traj_list_gen_fn,
        'test-cfree-traj-traj': cfree_traj_traj_list_gen_fn,
        'ConfConfCollision': traj_traj_collision_test,
        'TrajConfCollision': traj_traj_collision_test,
        'TrajTrajCollision': traj_traj_collision_test,
        'compute-motion': from_fn(get_motion_fn2(problem)),
        'TrajDistance': get_distance_fn(),
    }
    #stream_map = 'debug'

    problem = PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map, init, goal_formula)

    return problem, edges
예제 #16
0
def pdddlstream_from_problem(belief,
                             additional_init=[],
                             fixed_base=True,
                             **kwargs):
    world = belief.world  # One world per state
    task = world.task  # One task per world
    print(task)
    domain_pddl = read(get_file_path(__file__, '../pddl/domain.pddl'))
    # TODO: repackage stream outputs to avoid recomputation

    # Despite the base not moving, it could be re-estimated
    init_bq = belief.base_conf
    init_aq = belief.arm_conf
    init_gq = belief.gripper_conf

    carry_aq = world.carry_conf
    init_aq = carry_aq if are_confs_close(init_aq, carry_aq) else init_aq

    # TODO: the following doesn't work. Maybe because carry_conf is used elsewhere
    #carry_aq = init_aq if are_confs_close(init_aq, world.carry_conf) else world.carry_conf
    #calibrate_aq = init_aq if are_confs_close(init_aq, world.calibrate_conf) else world.calibrate_conf

    # Don't need this now that returning to old confs
    #open_gq = init_gq if are_confs_close(init_gq, world.open_gq) else world.open_gq
    #closed_gq = init_gq if are_confs_close(init_gq, world.closed_gq) else world.closed_gq
    open_gq = world.open_gq
    closed_gq = world.closed_gq

    constant_map = {
        '@world': 'world',
        '@gripper': 'gripper',
        '@stove': 'stove',
        '@none': None,
        '@rest_aq': carry_aq,
        #'@calibrate_aq': calibrate_aq,
        '@open_gq': open_gq,
        '@closed_gq': closed_gq,
        '@open': OPEN,
        '@closed': CLOSED,
        '@top': TOP_GRASP,
        '@side': SIDE_GRASP,
        '@bq0': init_bq,
    }
    top_joint = JOINT_TEMPLATE.format(TOP_DRAWER)
    bottom_joint = JOINT_TEMPLATE.format(BOTTOM_DRAWER)

    init = [
        ('BConf', init_bq),
        ('AtBConf', init_bq),
        ('AConf', init_bq, carry_aq),
        #('RestAConf', carry_aq),
        #('AConf', init_bq, calibrate_aq),
        (
            'Stationary', ),
        ('AConf', init_bq, init_aq),
        ('AtAConf', init_aq),
        ('GConf', open_gq),
        ('GConf', closed_gq),
        ('Grasp', None, None),
        ('AtGrasp', None, None),
        ('Above', top_joint, bottom_joint),
        ('Adjacent', top_joint, bottom_joint),
        ('Adjacent', bottom_joint, top_joint),
        ('Calibrated', ),
        ('CanMoveBase', ),
        ('CanMoveArm', ),
        ('CanMoveGripper', ),
    ] + list(task.init) + list(additional_init)
    for action_name, cost in ACTION_COSTS.items():
        function_name = '{}Cost'.format(title_from_snake(action_name))
        function = (function_name, )
        init.append(Equal(function, cost))  # TODO: stove state
    init += [('Stackable', name, surface) for name, surface in task.goal_on.items()] + \
            [('Stackable', name, stove) for name, stove in product(task.goal_cooked, STOVES)] + \
            [('Pressed', name) for name in belief.pressed] + \
            [('Cookable', name) for name in task.goal_cooked] + \
            [('Cooked', name) for name in belief.cooked] + \
            [('Status', status) for status in DOOR_STATUSES] + \
            [('Knob', knob) for knob in KNOBS] + \
            [('Joint', knob) for knob in KNOBS] + \
            [('Liquid', liquid) for _, liquid in task.init_liquid] + \
            [('HasLiquid', cup, liquid) for cup, liquid in belief.liquid] + \
            [('StoveKnob', STOVE_TEMPLATE.format(loc), KNOB_TEMPLATE.format(loc)) for loc in STOVE_LOCATIONS] + \
            [('GraspType', ty) for ty in task.grasp_types]  # TODO: grasp_type per object
    #[('Type', obj_name, 'stove') for obj_name in STOVES] + \
    #[('Camera', name) for name in world.cameras]
    if task.movable_base:
        init.append(('MovableBase', ))
    if fixed_base:
        init.append(('InitBConf', init_bq))
    if task.noisy_base:
        init.append(('NoisyBase', ))

    compute_pose_kin = get_compute_pose_kin(world)
    compute_angle_kin = get_compute_angle_kin(world)

    initial_poses = {}
    for joint_name, init_conf in belief.door_confs.items():
        if joint_name in DRAWER_JOINTS:
            init.append(('Drawer', joint_name))
        if joint_name in CABINET_JOINTS:
            init.append(('Cabinet', joint_name))
        joint = joint_from_name(world.kitchen, joint_name)
        surface_name = surface_from_joint(joint_name)
        init.append(('SurfaceJoint', surface_name, joint_name))
        # Relies on the fact that drawers have identical surface and link names
        link_name = get_link_name(world.kitchen, child_link_from_joint(joint))
        #link_name = str(link_name.decode('UTF-8'))
        #link_name = str(link_name.encode('ascii','ignore'))
        for conf in {
                init_conf, world.open_kitchen_confs[joint],
                world.closed_kitchen_confs[joint]
        }:
            # TODO: return to initial poses?
            world_pose, = compute_angle_kin(link_name, joint_name, conf)
            init.extend([
                ('Joint', joint_name),
                ('Angle', joint_name, conf),
                ('Obstacle', link_name),
                ('AngleKin', link_name, world_pose, joint_name, conf),
                ('WorldPose', link_name, world_pose),
            ])
            if joint in world.kitchen_joints:
                init.extend([
                    ('Sample', world_pose),
                    #('Value', world_pose), # comment out?
                ])
            if conf == init_conf:
                initial_poses[link_name] = world_pose
                init.extend([
                    ('AtAngle', joint_name, conf),
                    ('AtWorldPose', link_name, world_pose),
                ])

    for surface_name in ALL_SURFACES:
        if surface_name in OPEN_SURFACES:
            init.append(('Counter', surface_name))  # Fixed surface
        if surface_name in DRAWERS:
            init.append(('Drawer', surface_name))
        surface = surface_from_name(surface_name)
        surface_link = link_from_name(world.kitchen, surface.link)
        parent_joint = parent_joint_from_link(surface_link)
        if parent_joint not in world.kitchen_joints:
            # TODO: attach to world frame?
            world_pose = RelPose(world.kitchen, surface_link, init=True)
            initial_poses[surface_name] = world_pose
            init += [
                #('RelPose', surface_name, world_pose, 'world'),
                ('WorldPose', surface_name, world_pose),
                #('AtRelPose', surface_name, world_pose, 'world'),
                ('AtWorldPose', surface_name, world_pose),
                ('Sample', world_pose),
                #('Value', world_pose),
            ]
        init.extend([
            ('CheckNearby', surface_name),
            #('InitPose', world_pose),
            ('Localized', surface_name),
        ])
        for grasp_type in task.grasp_types:
            if (surface_name in OPEN_SURFACES) or has_place_database(
                    world.robot_name, surface_name, grasp_type):
                init.append(('AdmitsGraspType', surface_name, grasp_type))

    if belief.grasped is None:
        init.extend([
            ('HandEmpty', ),
            ('GConf', init_gq),
            ('AtGConf', init_gq),
        ])
    else:
        obj_name = belief.grasped.body_name
        assert obj_name not in belief.pose_dists
        grasp = belief.grasped
        init += [
            # Static
            #('Graspable', obj_name),
            ('Grasp', obj_name, grasp),
            ('IsGraspType', obj_name, grasp, grasp.grasp_type),
            # Fluent
            ('AtGrasp', obj_name, grasp),
            ('Holding', obj_name),
            ('Localized', obj_name),
        ]
        init.extend(('ValidGraspType', obj_name, grasp_type)
                    for grasp_type in task.grasp_types
                    if implies(world.is_real(),
                               is_valid_grasp_type(obj_name, grasp_type)))

    for obj_name in world.movable:
        obj_type = type_from_name(obj_name)
        if obj_type in BOWLS:
            init.append(('Bowl', obj_name))
        else:
            init.append(
                ('Obstacle', obj_name))  # TODO: hack to place within bowls
        if obj_type in COOKABLE:
            init.append(('Cookable', obj_name))
        if obj_type in POURABLE:
            init.append(('Pourable', obj_name))
        init += [
            ('Entity', obj_name),
            ('CheckNearby', obj_name),
        ] + [('Stackable', obj_name, counter)
             for counter in set(ALL_SURFACES) & set(COUNTERS)]

    # TODO: track poses over time to produce estimates
    for obj_name, pose_dist in belief.pose_dists.items():
        dist_support = pose_dist.dist.support()
        localized = pose_dist.is_localized()
        graspable = True
        if localized:
            init.append(('Localized', obj_name))
            [rel_pose] = dist_support
            roll, pitch, yaw = euler_from_quat(
                quat_from_pose(rel_pose.get_reference_from_body()))
            if (MAX_ERROR < abs(roll)) or (MAX_ERROR < abs(pitch)):
                graspable = False
                print(
                    '{} has an invalid orientation: roll={:.3f}, pitch={:.3f}'.
                    format(obj_name, roll, pitch))
        if graspable:
            #init.append(('Graspable', obj_name))
            init.extend(('ValidGraspType', obj_name, grasp_type)
                        for grasp_type in task.grasp_types
                        if implies(world.is_real(),
                                   is_valid_grasp_type(obj_name, grasp_type)))

        # Could also fully decompose into points (but many samples)
        # Could immediately add likely points for collision checking
        for rel_pose in (dist_support if localized else pose_dist.decompose()):
            surface_name = rel_pose.support
            if surface_name is None:
                # Treats as obstacle
                # TODO: could temporarily add to fixed
                world_pose = rel_pose
                init += [
                    ('WorldPose', obj_name, world_pose),
                    ('AtWorldPose', obj_name, world_pose),
                ]
                poses = [world_pose]
                #raise RuntimeError(obj_name, supporting)
            else:
                surface_pose = initial_poses[surface_name]
                world_pose, = compute_pose_kin(obj_name, rel_pose,
                                               surface_name, surface_pose)
                init += [
                    # Static
                    ('RelPose', obj_name, rel_pose, surface_name),
                    ('WorldPose', obj_name, world_pose),
                    ('PoseKin', obj_name, world_pose, rel_pose, surface_name,
                     surface_pose),
                    # Fluent
                    ('AtRelPose', obj_name, rel_pose, surface_name),
                    ('AtWorldPose', obj_name, world_pose),
                ]
                if localized:
                    init.append(('On', obj_name, surface_name))
                poses = [rel_pose, world_pose]
            for pose in poses:
                if isinstance(pose, PoseDist):
                    init.append(('Dist', pose))
                else:
                    init.extend([('Sample', pose)])  #, ('Value', pose)])

    #for body, ty in problem.body_types:
    #    init += [('Type', body, ty)]
    #bodies_from_type = get_bodies_from_type(problem)
    #bodies = bodies_from_type[get_parameter_name(ty)] if is_parameter(ty) else [ty]

    goal_formula = get_goal(belief, init)
    stream_pddl, stream_map = get_streams(world,
                                          teleport_base=task.teleport_base,
                                          **kwargs)

    print('Constants:', constant_map)
    print('Init:', sorted(init, key=lambda f: f[0]))
    print('Goal:', goal_formula)
    #print('Streams:', stream_map.keys()) # DEBUG

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                       init, goal_formula)
예제 #17
0
def pddlstream_from_tamp(tamp_problem,
                         use_stream=True,
                         use_optimizer=False,
                         collisions=True):
    initial = tamp_problem.initial
    assert (not initial.holding)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    external_paths = []
    if use_stream:
        external_paths.append(get_file_path(__file__, 'stream.pddl'))
    if use_optimizer:
        external_paths.append(get_file_path(
            __file__, 'optimizer.pddl'))  # optimizer | optimizer_hard
    external_pddl = [read(path) for path in external_paths]

    constant_map = {}
    init = [
        ('Region', GROUND_NAME),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', b, p) for b, p in initial.block_poses.items()] + \
           [('Grasp', b, GRASP) for b in initial.block_poses] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('Placeable', b, GROUND_NAME) for b in initial.block_poses.keys()]
    goal_literals = []

    for r, q in initial.robot_confs.items():
        init += [
            ('Robot', r),
            ('CanMove', r),
            ('Conf', q),
            ('AtConf', r, q),
            ('HandEmpty', r),
        ]
        if tamp_problem.goal_conf is not None:
            #goal_literals += [('AtConf', tamp_problem.goal_conf)]
            goal_literals += [('AtConf', r, q)]

    for b, r in tamp_problem.goal_regions.items():
        if isinstance(r, str):
            init += [('Region', r), ('Placeable', b, r)]
            goal_literals += [('In', b, r)]
        else:
            init += [('Pose', b, r)]
            goal_literals += [('AtPose', b, r)]

    #goal_literals += [Not(('Unsafe',))] # ('HandEmpty',)
    goal = And(*goal_literals)

    stream_map = {
        's-motion':
        from_fn(plan_motion),
        's-region':
        from_gen_fn(get_pose_gen(tamp_problem.regions)),
        't-region':
        from_test(get_region_test(tamp_problem.regions)),
        's-ik':
        from_fn(inverse_kin_fn),
        #'s-ik': from_gen_fn(unreliable_ik_fn),
        'dist':
        distance_fn,
        'duration':
        duration_fn,
        't-cfree':
        from_test(
            lambda *args: implies(collisions, not collision_test(*args))),
    }
    if use_optimizer:
        # To avoid loading gurobi
        stream_map.update({
            'gurobi':
            from_list_fn(
                get_optimize_fn(tamp_problem.regions, collisions=collisions)),
            'rrt':
            from_fn(cfree_motion_fn),
        })
    #stream_map = 'debug'

    return PDDLProblem(domain_pddl, constant_map, external_pddl, stream_map,
                       init, goal)
예제 #18
0
파일: run.py 프로젝트: Khodeir/pddlstream
def pddlstream_from_problem(problem,
                            base_limits=None,
                            collisions=True,
                            teleport=False):
    robot = problem.robot

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {
        '@sink': 'sink',
        '@stove': 'stove',
    }

    #initial_bq = Pose(robot, get_pose(robot))
    initial_bq = Conf(robot, get_group_joints(robot, 'base'),
                      get_group_conf(robot, 'base'))
    init = [
        ('CanMove',),
        ('BConf', initial_bq),
        ('AtBConf', initial_bq),
        Equal(('PickCost',), 1),
        Equal(('PlaceCost',), 1),
    ] + [('Sink', s) for s in problem.sinks] + \
           [('Stove', s) for s in problem.stoves] + \
           [('Connected', b, d) for b, d in problem.buttons] + \
           [('Button', b) for b, _ in problem.buttons]
    for arm in ARM_NAMES:
        #for arm in problem.arms:
        joints = get_arm_joints(robot, arm)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        init += [('Arm', arm), ('AConf', arm, conf), ('HandEmpty', arm),
                 ('AtAConf', arm, conf)]
        if arm in problem.arms:
            init += [('Controllable', arm)]
    for body in problem.movable:
        pose = Pose(body, get_pose(body), init=True)  # TODO: supported here
        init += [('Graspable', body), ('Pose', body, pose),
                 ('AtPose', body, pose), ('Stackable', body, None)]
        for surface in problem.surfaces:
            if is_placement(body, surface):
                init += [('Supported', body, pose, surface)]
    for body, ty in problem.body_types:
        init += [('Type', body, ty)]

    bodies_from_type = get_bodies_from_type(problem)
    goal_literals = []
    if problem.goal_conf is not None:
        goal_conf = Conf(robot, get_group_joints(robot, 'base'),
                         problem.goal_conf)
        init += [('BConf', goal_conf)]
        goal_literals += [('AtBConf', goal_conf)]
    for ty, s in problem.goal_on:
        bodies = bodies_from_type[get_parameter_name(ty)] if is_parameter(
            ty) else [ty]
        init += [('Stackable', b, s) for b in bodies]
        goal_literals += [('On', ty, s)]
    goal_literals += [('Holding', a, b) for a, b in problem.goal_holding] + \
                     [('Cleaned', b)  for b in problem.goal_cleaned] + \
                     [('Cooked', b)  for b in problem.goal_cooked]
    goal_formula = []
    for literal in goal_literals:
        parameters = [a for a in get_args(literal) if is_parameter(a)]
        if parameters:
            type_literals = [('Type', p, get_parameter_name(p))
                             for p in parameters]
            goal_formula.append(
                Exists(parameters, And(literal, *type_literals)))
        else:
            goal_formula.append(literal)
    goal_formula = And(*goal_formula)

    custom_limits = {}
    if base_limits is not None:
        custom_limits.update(get_custom_limits(robot, problem.base_limits))

    stream_map = {
        'sample-pose':
        from_gen_fn(get_stable_gen(problem, collisions=collisions)),
        'sample-grasp':
        from_list_fn(get_grasp_gen(problem, collisions=collisions)),
        #'sample-grasp': from_gen_fn(get_grasp_gen(problem, collisions=collisions)),
        'inverse-kinematics':
        from_gen_fn(
            get_ik_ir_gen(problem,
                          custom_limits=custom_limits,
                          collisions=collisions,
                          teleport=teleport)),
        'plan-base-motion':
        from_fn(
            get_motion_gen(problem,
                           custom_limits=custom_limits,
                           collisions=collisions,
                           teleport=teleport)),
        'test-cfree-pose-pose':
        from_test(get_cfree_pose_pose_test(collisions=collisions)),
        'test-cfree-approach-pose':
        from_test(get_cfree_approach_pose_test(problem,
                                               collisions=collisions)),
        'test-cfree-traj-pose':
        from_test(get_cfree_traj_pose_test(robot, collisions=collisions)),
        #'test-cfree-traj-grasp-pose': from_test(get_cfree_traj_grasp_pose_test(problem, collisions=collisions)),

        #'MoveCost': move_cost_fn,
        'Distance':
        distance_fn,
    }
    #stream_map = DEBUG

    return PDDLProblem(domain_pddl, constant_map, stream_pddl, stream_map,
                       init, goal_formula)