예제 #1
0
파일: run.py 프로젝트: m1sk/pddlstream
def pddlstream_from_problem(robot,
                            movable=[],
                            teleport=False,
                            movable_collisions=False,
                            grasp_name='top'):
    #assert (not are_colliding(tree, kin_cache))

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}

    print('Robot:', robot)
    conf = BodyConf(robot, get_configuration(robot))
    init = [('CanMove', ), ('Conf', conf), ('AtConf', conf), ('HandEmpty', )]

    fixed = get_fixed(robot, movable)
    print('Movable:', movable)
    print('Fixed:', fixed)
    for body in movable:
        pose = BodyPose(body, get_pose(body))
        init += [('Graspable', body), ('Pose', body, pose),
                 ('AtPose', body, pose)]
        for surface in fixed:
            init += [('Stackable', body, surface)]
            if is_placement(body, surface):
                init += [('Supported', body, pose, surface)]

    for body in fixed:
        name = get_body_name(body)
        if 'sink' in name:
            init += [('Sink', body)]
        if 'stove' in name:
            init += [('Stove', body)]

    body = movable[0]
    goal = (
        'and',
        ('AtConf', conf),
        #('Holding', body),
        #('On', body, fixed[1]),
        #('On', body, fixed[2]),
        #('Cleaned', body),
        ('Cooked', body),
    )

    stream_map = {
        'sample-pose': from_gen_fn(get_stable_gen(fixed)),
        'sample-grasp': from_gen_fn(get_grasp_gen(robot, grasp_name)),
        'inverse-kinematics': from_fn(get_ik_fn(robot, fixed, teleport)),
        #'plan-free-motion': from_fn(get_free_motion_gen(robot, fixed, teleport)),
        'plan-free-motion': empty_gen(),
        # 'plan-holding-motion': from_fn(get_holding_motion_gen(robot, fixed, teleport)),
        'plan-holding-motion': empty_gen(),
        'TrajCollision': get_movable_collision_test(),
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #2
0
파일: run.py 프로젝트: m1sk/pddlstream
def pddlstream_from_problem(problem, teleport=False, movable_collisions=False):
    robot = problem.robot

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {
        'world': 'world',
    }

    world = 'world'
    initial_bq = Pose(robot, get_pose(robot))
    init = [
        ('CanMove',),
        ('BConf', initial_bq), # TODO: could make pose as well...
        ('AtBConf', initial_bq),
        ('AtAConf', world, None),
        ('AtPose', world, world, None),
    ] + [('Sink', s) for s in problem.sinks] + \
           [('Stove', s) for s in problem.stoves] + \
           [('Connected', b, d) for b, d in problem.buttons] + \
           [('Button', b) for b, _ in problem.buttons]
    #for arm in ARM_JOINT_NAMES:
    for arm in problem.arms:
        joints = get_arm_joints(robot, arm)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        init += [('Arm', arm), ('AConf', arm, conf),
                 ('HandEmpty', arm), ('AtAConf', arm, conf), ('AtPose', arm, arm, None)]
        if arm in problem.arms:
            init += [('Controllable', arm)]
    for body in problem.movable:
        pose = Pose(body, get_pose(body))
        init += [('Graspable', body), ('Pose', body, pose),
                 ('AtPose', world, body, pose)]
        for surface in problem.surfaces:
            init += [('Stackable', body, surface)]
            if is_placement(body, surface):
                init += [('Supported', body, pose, surface)]

    goal = ['and']
    if problem.goal_conf is not None:
        goal_conf = Pose(robot, problem.goal_conf)
        init += [('BConf', goal_conf)]
        goal += [('AtBConf', goal_conf)]
    goal += [('Holding', a, b) for a, b in problem.goal_holding] + \
                     [('On', b, s) for b, s in problem.goal_on] + \
                     [('Cleaned', b)  for b in problem.goal_cleaned] + \
                     [('Cooked', b)  for b in problem.goal_cooked]

    stream_map = {
        'sample-pose': get_stable_gen(problem),
        'sample-grasp': from_list_fn(get_grasp_gen(problem)),
        'inverse-kinematics': from_gen_fn(get_ik_ir_gen(problem, teleport=teleport)),

        'plan-base-motion': from_fn(get_motion_gen(problem, teleport=teleport)),
        #'plan-base-motion': empty_gen(),
        'BTrajCollision': fn_from_constant(False),
    }
    # get_press_gen(problem, teleport=teleport)

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #3
0
파일: run.py 프로젝트: m1sk/pddlstream
def create_problem(goal, obstacles=(), regions={}, max_distance=.5):
    directory = os.path.dirname(os.path.abspath(__file__))
    domain_pddl = read(os.path.join(directory, 'domain.pddl'))
    stream_pddl = read(os.path.join(directory, 'stream.pddl'))
    constant_map = {}

    q0 = np.array([0, 0])
    init = [
        ('Conf', q0),
        ('AtConf', q0),
    ] + [('Region', r) for r in regions]

    if isinstance(goal, str):
        goal = ('In', goal)
    else:
        init += [('Conf', goal)]
        goal = ('AtConf', goal)

    np.set_printoptions(precision=3)
    samples = []

    def region_gen(region):
        while True:
            q = sample_box(regions[region])
            samples.append(q)
            yield (q, )

    # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf
    # d = 2
    # vol_free = (1 - 0) * (1 - 0)
    # vol_ball = math.pi * (1 ** 2)
    # gamma = 2 * ((1 + 1. / d) * (vol_free / vol_ball)) ** (1. / d)

    roadmap = []

    def connected_test(q1, q2):
        # n = len(samples)
        # threshold = gamma * (math.log(n) / n) ** (1. / d)
        threshold = max_distance
        are_connected = (get_distance(q1, q2) <= threshold) and \
            is_collision_free((q1, q2), obstacles)
        if are_connected:
            roadmap.append((q1, q2))
        return are_connected

    def distance_fn(q1, q2):
        return scale_distance(get_distance(q1, q2))

    stream_map = {
        'sample-region': from_gen_fn(region_gen),
        'connect': from_test(connected_test),
        'distance': distance_fn,
    }

    problem = (domain_pddl, constant_map, stream_pddl, stream_map, init, goal)

    return problem, roadmap
예제 #4
0
파일: run.py 프로젝트: m1sk/pddlstream
def pddlstream_from_tamp(tamp_problem):
    initial = tamp_problem.initial
    assert (initial.holding is None)

    known_poses = list(initial.block_poses.values()) + \
                  list(tamp_problem.goal_poses.values())

    directory = os.path.dirname(os.path.abspath(__file__))
    domain_pddl = read(os.path.join(directory, 'domain.pddl'))
    stream_pddl = read(os.path.join(directory, 'stream.pddl'))

    q100 = np.array([100, 100])
    constant_map = {
        'q100': q100,
    }

    init = [
        #Type(q100, 'conf'),
        ('CanMove',),
        ('Conf', q100),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', p) for p in known_poses] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()]
    # [('Pose', p) for p in known_poses + tamp_problem.poses] + \

    goal = And(*[('AtPose', b, p) for b, p in tamp_problem.goal_poses.items()])

    def collision_test(p1, p2):
        return np.linalg.norm(p2 - p1) <= 1e-1

    def distance_fn(q1, q2):
        ord = 1  # 1 | 2
        return int(math.ceil(np.linalg.norm(q2 - q1, ord=ord)))

    # TODO: convert to lower case
    stream_map = {
        #'sample-pose': from_gen_fn(lambda: ((np.array([x, 0]),) for x in range(len(poses), n_poses))),
        'sample-pose':
        from_gen_fn(lambda: ((p, ) for p in tamp_problem.poses)),
        'inverse-kinematics': from_fn(lambda p: (p + GRASP, )),
        #'inverse-kinematics': IKGenerator,
        #'inverse-kinematics': IKFactGenerator,
        'collision-free': from_test(lambda *args: not collision_test(*args)),
        'collision': collision_test,
        #'constraint-solver': None,
        'distance': distance_fn,
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #5
0
파일: run.py 프로젝트: m1sk/pddlstream
def pddlstream_from_tamp(tamp_problem):
    initial = tamp_problem.initial
    assert (initial.holding is None)

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {}

    init = [
        ('CanMove',),
        ('Conf', initial.conf),
        ('AtConf', initial.conf),
        ('HandEmpty',),
        Equal((TOTAL_COST,), 0)] + \
           [('Block', b) for b in initial.block_poses.keys()] + \
           [('Pose', b, p) for b, p in initial.block_poses.items()] + \
           [('Region', r) for r in tamp_problem.regions.keys()] + \
           [('AtPose', b, p) for b, p in initial.block_poses.items()] + \
           [('Placeable', b, GROUND) for b in initial.block_poses.keys()] + \
           [('Placeable', b, r) for b, r in tamp_problem.goal_regions.items()]

    goal_literals = [('HandEmpty',)] + \
                    [('In', b, r) for b, r in tamp_problem.goal_regions.items()]
    if tamp_problem.goal_conf is not None:
        goal_literals += [('AtConf', tamp_problem.goal_conf)]
    goal = And(*goal_literals)

    stream_map = {
        'plan-motion': from_fn(plan_motion),
        'sample-pose': from_gen_fn(get_pose_gen(tamp_problem.regions)),
        'test-region': from_test(get_region_test(tamp_problem.regions)),
        'inverse-kinematics': from_fn(inverse_kin_fn),
        'collision-free': from_test(lambda *args: not collision_test(*args)),
        'cfree': lambda *args: not collision_test(*args),
        'posecollision': collision_test,
        'trajcollision': lambda *args: False,
        'distance': distance_fn,
        #'Valid': valid_state_fn,
    }
    #stream_map = 'debug'

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #6
0
def get_problem(init, goal):
    directory = os.path.dirname(os.path.abspath(__file__))

    domain_pddl = read_pddl('stream/domain.pddl')
    constant_map = {}
    stream_pddl = read(os.path.join(directory, 'stream', 'stream.pddl'))
    east_map = dict()
    for pred in init:
        if pred[0] == 'east':
            east_map[pred[1]] = pred[2]

    def gen_far_east(p, tile):
        current_far_east = test_simple_and_derived
        while current_far_east in east_map:
            print(current_far_east)
            next_east = east_map[current_far_east]
            current_far_east = next_east
            yield (next_east, )

    stream_map = {
        'find-far-east': from_gen_fn(gen_far_east),
    }

    return domain_pddl, constant_map, stream_pddl, stream_map, init, goal
예제 #7
0
def pddlstream_from_state(state, teleport=False):
    task = state.task
    robot = task.robot
    # TODO: infer open world from task

    domain_pddl = read(get_file_path(__file__, 'domain.pddl'))
    stream_pddl = read(get_file_path(__file__, 'stream.pddl'))
    constant_map = {
        'base': 'base',
        'left': 'left',
        'right': 'right',
        'head': 'head',
    }

    #base_conf = state.poses[robot]
    base_conf = Conf(robot, get_group_joints(robot, 'base'),
                     get_group_conf(robot, 'base'))
    scan_cost = 1
    init = [
        ('BConf', base_conf),
        ('AtBConf', base_conf),
        Equal(('MoveCost', ), scale_cost(1)),
        Equal(('PickCost', ), scale_cost(1)),
        Equal(('PlaceCost', ), scale_cost(1)),
        Equal(('ScanCost', ), scale_cost(scan_cost)),
        Equal(('RegisterCost', ), scale_cost(1)),
    ]
    holding_arms = set()
    holding_bodies = set()
    for attach in state.attachments.values():
        holding_arms.add(attach.arm)
        holding_bodies.add(attach.body)
        init += [('Grasp', attach.body, attach.grasp),
                 ('AtGrasp', attach.arm, attach.body, attach.grasp)]
    for arm in ARM_NAMES:
        joints = get_arm_joints(robot, arm)
        conf = Conf(robot, joints, get_joint_positions(robot, joints))
        init += [('Arm', arm), ('AConf', arm, conf), ('AtAConf', arm, conf)]
        if arm in task.arms:
            init += [('Controllable', arm)]
        if arm not in holding_arms:
            init += [('HandEmpty', arm)]
    for body in task.get_bodies():
        if body in holding_bodies:
            continue
        # TODO: no notion whether observable actually corresponds to the correct thing
        pose = state.poses[body]
        init += [
            ('Pose', body, pose),
            ('AtPose', body, pose),
            ('Observable', pose),
        ]

    for body in task.movable:
        init += [('Graspable', body)]
    for body in task.get_bodies():
        supports = task.get_supports(body)
        if supports is None:
            continue
        for surface in supports:
            p_obs = state.b_on[body].prob(surface)
            cost = revisit_mdp_cost(0, scan_cost,
                                    p_obs)  # TODO: imperfect observation model
            init += [('Stackable', body, surface),
                     Equal(('LocalizeCost', surface, body), scale_cost(cost))]
            #if is_placement(body, surface):
            if is_center_stable(body, surface):
                if body in holding_bodies:
                    continue
                pose = state.poses[body]
                init += [('Supported', body, pose, surface)]

    for body in task.get_bodies():
        if state.is_localized(body):
            init.append(('Localized', body))
        else:
            init.append(('Uncertain', body))
        if body in state.registered:
            init.append(('Registered', body))

    goal = And(*[('Holding', a, b) for a, b in task.goal_holding] + \
           [('On', b, s) for b, s in task.goal_on] + \
           [('Localized', b) for b in task.goal_localized] + \
           [('Registered', b) for b in task.goal_registered])

    stream_map = {
        'sample-pose': get_stable_gen(task),
        'sample-grasp': from_list_fn(get_grasp_gen(task)),
        'inverse-kinematics':
        from_gen_fn(get_ik_ir_gen(task, teleport=teleport)),
        'plan-base-motion': from_fn(get_motion_gen(task, teleport=teleport)),
        'inverse-visibility': from_gen_fn(get_vis_gen(task)),
        'plan-scan': from_gen_fn(get_scan_gen(state)),
    }

    return Problem(domain_pddl, constant_map, stream_pddl, stream_map, init,
                   goal)