def test_nesterovmomentum_optimizer_univar(self, x_start, tol):
        """Tests that nesterov momentum optimizer takes one and two steps correctly
        for univariate functions."""
        stepsize, gamma = 0.1, 0.5
        nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)

        univariate_funcs = [np.sin, lambda x: np.exp(x / 10.0), lambda x: x ** 2]
        grad_uni_fns = [
            lambda x: (np.cos(x),),
            lambda x: (np.exp(x / 10.0) / 10.0,),
            lambda x: (2 * x,),
        ]

        for gradf, f in zip(grad_uni_fns, univariate_funcs):
            nesmom_opt.reset()

            x_onestep = nesmom_opt.step(f, x_start)
            x_onestep_target = x_start - gradf(x_start)[0] * stepsize
            assert np.allclose(x_onestep, x_onestep_target, atol=tol)

            x_twosteps = nesmom_opt.step(f, x_onestep)
            momentum_term = gamma * gradf(x_start)[0]
            shifted_grad_term = gradf(x_onestep - stepsize * momentum_term)[0]
            x_twosteps_target = x_onestep - (shifted_grad_term + momentum_term) * stepsize
            assert np.allclose(x_twosteps, x_twosteps_target, atol=tol)
예제 #2
0
    def run_vqe(H, ansatz, params=None):
        from pennylane.optimize import NesterovMomentumOptimizer, AdamOptimizer
        num_qubits = len(H.wires)
        num_layers = 4

        if params is None:
            params = qml.init.strong_ent_layers_uniform(num_layers, num_qubits, 3)

        cost_fn = qml.ExpvalCost(ansatz, H, dev)

        stepsize = 0.1
        opt = NesterovMomentumOptimizer(stepsize)
        max_iterations = 300
        conv_tol = 1e-8

        energy = 0

        for n in range(max_iterations):
            params, prev_energy = opt.step_and_cost(cost_fn, params)
            energy = cost_fn(params)
            conv = np.abs(energy - prev_energy)

            stepsize *= 0.99
            opt.update_stepsize(stepsize)

            if DEBUG and n % 20 == 0:
                print('Iteration = {:},  Energy = {:.8f} Ha'.format(n, energy))

            if conv <= conv_tol:
                break

        return energy, params
예제 #3
0
def optimize(feats_train, feats_val, Y_train, Y_val, features, Y):
    num_qubits = 2
    num_layers = 6
    var_init = (0.01 * np.random.randn(num_layers, num_qubits, 3), 0.0)

    opt = NesterovMomentumOptimizer(0.01)
    batch_size = 5

    # train the variational classifier
    var = var_init
    for it in range(60):

        # Update the weights by one optimizer step
        batch_index = np.random.randint(0, num_train, (batch_size, ))
        feats_train_batch = feats_train[batch_index]
        Y_train_batch = Y_train[batch_index]
        var = opt.step(lambda v: cost(v, feats_train_batch, Y_train_batch),
                       var)

        # Compute predictions on train and validation set
        predictions_train = [
            np.sign(variational_classifier(var, angles=f)) for f in feats_train
        ]
        predictions_val = [
            np.sign(variational_classifier(var, angles=f)) for f in feats_val
        ]

        # Compute accuracy on train and validation set
        acc_train = accuracy(Y_train, predictions_train)
        acc_val = accuracy(Y_val, predictions_val)

        print(
            "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} "
            "".format(it + 1, cost(var, features, Y), acc_train, acc_val))
    return var
예제 #4
0
 class A:
     sgd_opt = GradientDescentOptimizer(stepsize)
     mom_opt = MomentumOptimizer(stepsize, momentum=gamma)
     nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)
     adag_opt = AdagradOptimizer(stepsize)
     rms_opt = RMSPropOptimizer(stepsize, decay=gamma)
     adam_opt = AdamOptimizer(stepsize, beta1=gamma, beta2=delta)
예제 #5
0
    def setUp(self):
        self.sgd_opt = GradientDescentOptimizer(stepsize)
        self.mom_opt = MomentumOptimizer(stepsize, momentum=gamma)
        self.nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)
        self.adag_opt = AdagradOptimizer(stepsize)
        self.rms_opt = RMSPropOptimizer(stepsize, decay=gamma)
        self.adam_opt = AdamOptimizer(stepsize, beta1=gamma, beta2=delta)

        self.fnames = ['test_function_1', 'test_function_2', 'test_function_3']
        self.univariate_funcs = [
            np.sin, lambda x: np.exp(x / 10.), lambda x: x**2
        ]
        self.grad_uni_fns = [
            np.cos, lambda x: np.exp(x / 10.) / 10., lambda x: 2 * x
        ]
        self.multivariate_funcs = [
            lambda x: np.sin(x[0]) + np.cos(x[1]),
            lambda x: np.exp(x[0] / 3) * np.tanh(x[1]),
            lambda x: np.sum([x_**2 for x_ in x])
        ]
        self.grad_multi_funcs = [
            lambda x: np.array([np.cos(x[0]), -np.sin(x[1])]),
            lambda x: np.array([
                np.exp(x[0] / 3) / 3 * np.tanh(x[1]),
                np.exp(x[0] / 3) * (1 - np.tanh(x[1])**2)
            ]), lambda x: np.array([2 * x_ for x_ in x])
        ]
        self.mvar_mdim_funcs = [
            lambda x: np.sin(x[0, 0]) + np.cos(x[1, 0]) - np.sin(x[0, 1]) + x[
                1, 1], lambda x: np.exp(x[0, 0] / 3) * np.tanh(x[0, 1]),
            lambda x: np.sum([x_[0]**2 for x_ in x])
        ]
        self.grad_mvar_mdim_funcs = [
            lambda x: np.array([[np.cos(x[0, 0]), -np.cos(x[0, 1])],
                                [-np.sin(x[1, 0]), 1.]]),
            lambda x: np.array([[
                np.exp(x[0, 0] / 3) / 3 * np.tanh(x[0, 1]),
                np.exp(x[0, 0] / 3) * (1 - np.tanh(x[0, 1])**2)
            ], [0., 0.]]), lambda x: np.array([[2 * x_[0], 0.] for x_ in x])
        ]

        self.class_fun = class_fun
        self.quant_fun = quant_fun
        self.hybrid_fun = hybrid_fun
        self.hybrid_fun_nested = hybrid_fun_nested
        self.hybrid_fun_flat = hybrid_fun_flat
        self.hybrid_fun_mdarr = hybrid_fun_mdarr
        self.hybrid_fun_mdlist = hybrid_fun_mdlist

        self.mixed_list = [(0.2, 0.3), np.array([0.4, 0.2, 0.4]), 0.1]
        self.mixed_tuple = (np.array([0.2, 0.3]), [0.4, 0.2, 0.4], 0.1)
        self.nested_list = [[[0.2], 0.3], [0.1, [0.4]], -0.1]
        self.flat_list = [0.2, 0.3, 0.1, 0.4, -0.1]
        self.multid_array = np.array([[0.1, 0.2], [-0.1, -0.4]])
        self.multid_list = [[0.1, 0.2], [-0.1, -0.4]]
예제 #6
0
    def train_classifier(x_train, y_train, x_test, y_test, shots=50):
        from pennylane.optimize import NesterovMomentumOptimizer, AdamOptimizer

        old_shots = dev.shots
        dev.shots = shots

        num_train = len(x_train)
        num_layers = 4
        var_init = (qml.init.strong_ent_layers_uniform(num_layers, n_qubits,
                                                       3), 0.0)
        stepsize = 0.1
        opt = NesterovMomentumOptimizer(stepsize)
        batch_size = 5
        maxit = 20

        # train the variational classifier
        var = var_init
        for it in range(maxit):
            # Update the weights by one optimizer step
            batch_index = np.random.randint(0, num_train, (batch_size, ))
            x_train_batch = x_train[batch_index]
            y_train_batch = y_train[batch_index]
            var = opt.step(lambda v: cost(v, x_train_batch, y_train_batch),
                           var)

            # stepsize *= 0.95
            # opt.update_stepsize(stepsize)

            # Compute predictions on train and validation set
            predictions_train = [
                np.sign(variational_classifier(var, f)) for f in x_train
            ]
            acc_train = accuracy(y_train, predictions_train)

            if DEBUG:
                predictions_val = [
                    np.sign(variational_classifier(var, f)) for f in x_test
                ]
                acc_val = accuracy(y_test, predictions_val)

                print(
                    "Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} "
                    "".format(it + 1, cost(var, x_train, y_train), acc_train,
                              acc_val))

            if acc_train > 0.95:
                break

            dev.shots = old_shots
        return var
예제 #7
0
    def run_vqe_excited2(H, ansatz, gs_params, fes_params, params=None):
        from pennylane.optimize import NesterovMomentumOptimizer, AdamOptimizer
        num_qubits = len(H.wires)
        num_layers = 4

        if params is None:
            params = qml.init.strong_ent_layers_uniform(num_layers, num_qubits, 3)

        @qml.qnode(dev)
        def overlap(params, wires):
            variational_ansatz(gs_params, wires)
            qml.inv(qml.template(variational_ansatz)(params, wires))
            return qml.probs([0, 1, 2])

        @qml.qnode(dev)
        def overlap2(params, wires):
            variational_ansatz(fes_params, wires)
            qml.inv(qml.template(variational_ansatz)(params, wires))
            return qml.probs([0, 1, 2])

        def cost_fn(params, **kwargs):
            h_cost = qml.ExpvalCost(ansatz, H, dev)
            h = h_cost(params, **kwargs)
            o = overlap(params, wires=H.wires)
            o2 = overlap2(params, wires=H.wires)
            return h + 1.5 * o[0] + o2[0]

        stepsize = 0.3
        opt = NesterovMomentumOptimizer(stepsize)
        max_iterations = 300
        conv_tol = 1e-8

        energy = 0

        for n in range(max_iterations):
            params, prev_energy = opt.step_and_cost(cost_fn, params)
            energy = cost_fn(params)
            conv = np.abs(energy - prev_energy)

            stepsize *= 0.99
            opt.update_stepsize(stepsize)

            if DEBUG and n % 20 == 0:
                print('Iteration = {:},  Energy = {:.8f} Ha'.format(n, energy))

            if conv <= conv_tol:
                break

        return energy, params
    def test_step_and_cost_autograd_nesterov_multid_array(self):
        """Test that the correct cost is returned via the step_and_cost method for the
        Nesterov momentum optimizer"""
        stepsize, gamma = 0.1, 0.5
        nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)
        multid_array = np.array([[0.1, 0.2], [-0.1, -0.4]])

        @qml.qnode(qml.device("default.qubit", wires=1))
        def quant_fun_mdarr(var):
            qml.RX(var[0, 1], wires=[0])
            qml.RY(var[1, 0], wires=[0])
            qml.RY(var[1, 1], wires=[0])
            return qml.expval(qml.PauliZ(0))

        _, res = nesmom_opt.step_and_cost(quant_fun_mdarr, multid_array)
        expected = quant_fun_mdarr(multid_array)

        assert np.all(res == expected)
예제 #9
0
def opt(opt_name):
    stepsize, gamma, delta = 0.1, 0.5, 0.8

    if opt_name == "gd":
        return GradientDescentOptimizer(stepsize)

    if opt_name == "nest":
        return NesterovMomentumOptimizer(stepsize, momentum=gamma)

    if opt_name == "moment":
        return MomentumOptimizer(stepsize, momentum=gamma)

    if opt_name == "ada":
        return AdagradOptimizer(stepsize)

    if opt_name == "rms":
        return RMSPropOptimizer(stepsize, decay=gamma)

    if opt_name == "adam":
        return AdamOptimizer(stepsize, beta1=gamma, beta2=delta)
예제 #10
0
    def test_nesterovmomentum_optimizer_multivar(self, tol):
        """Tests that nesterov momentum optimizer takes one and two steps correctly
        for multivariate functions."""
        stepsize, gamma = 0.1, 0.5
        nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)

        multivariate_funcs = [
            lambda x: np.sin(x[0]) + np.cos(x[1]),
            lambda x: np.exp(x[0] / 3) * np.tanh(x[1]),
            lambda x: np.sum([x_ ** 2 for x_ in x]),
        ]
        grad_multi_funcs = [
            lambda x: (np.array([np.cos(x[0]), -np.sin(x[1])]),),
            lambda x: (
                np.array(
                    [
                        np.exp(x[0] / 3) / 3 * np.tanh(x[1]),
                        np.exp(x[0] / 3) * (1 - np.tanh(x[1]) ** 2),
                    ]
                ),
            ),
            lambda x: (np.array([2 * x_ for x_ in x]),),
        ]

        x_vals = np.linspace(-10, 10, 16, endpoint=False)

        for gradf, f in zip(grad_multi_funcs, multivariate_funcs):
            for jdx in range(len(x_vals[:-1])):
                nesmom_opt.reset()

                x_vec = x_vals[jdx : jdx + 2]
                x_onestep = nesmom_opt.step(f, x_vec)
                x_onestep_target = x_vec - gradf(x_vec)[0] * stepsize
                assert np.allclose(x_onestep, x_onestep_target, atol=tol)

                x_twosteps = nesmom_opt.step(f, x_onestep)
                momentum_term = gamma * gradf(x_vec)[0]
                shifted_grad_term = gradf(x_onestep - stepsize * momentum_term)[0]
                x_twosteps_target = x_onestep - (shifted_grad_term + momentum_term) * stepsize
                assert np.allclose(x_twosteps, x_twosteps_target, atol=tol)
예제 #11
0
    def test_step_and_cost_autograd_nesterov_multiple_inputs(self):
        """Test that the correct cost is returned via the step_and_cost method for the
        Nesterov momentum optimizer"""
        stepsize, gamma = 0.1, 0.5
        nesmom_opt = NesterovMomentumOptimizer(stepsize, momentum=gamma)

        @qml.qnode(qml.device("default.qubit", wires=1))
        def quant_fun(*variables):
            qml.RX(variables[0][1], wires=[0])
            qml.RY(variables[1][2], wires=[0])
            qml.RY(variables[2], wires=[0])
            return qml.expval(qml.PauliZ(0))

        inputs = [
            np.array((0.2, 0.3), requires_grad=True),
            np.array([0.4, 0.2, 0.4], requires_grad=True),
            np.array(0.1, requires_grad=True),
        ]

        _, res = nesmom_opt.step_and_cost(quant_fun, *inputs)
        expected = quant_fun(*inputs)

        assert np.all(res == expected)
def train_and_test(X_train, Y_train, X_test, Y_test):
    opt = NesterovMomentumOptimizer(0.01)
    batch_size = 5

    # train the variational classifier
    var = var_init

    test_accuracies = []
    train_accuracies = []
    costs = []
    for it in range(num_iterations):

        # Update the weights by one optimizer step
        batch_index = np.random.randint(0, num_train, (batch_size, ))
        X_train_batch = X_train[batch_index]
        Y_train_batch = Y_train[batch_index]
        var = opt.step(lambda v: cost(v, X_train_batch, Y_train_batch), var)

        # Compute predictions on train and validation set
        predictions_train = [np.sign(variational_classifier(var, f)) for f in X_train]
        predictions_test = [np.sign(variational_classifier(var, f)) for f in X_test]

        # Compute accuracy on train and validation set
        acc_train = accuracy(Y_train, predictions_train)
        acc_test = accuracy(Y_test, predictions_test)

        # Compute cost on all samples
        c = cost(var, X, Y)

        costs.append(c)
        test_accuracies.append(acc_test)
        train_accuracies.append(acc_train)

        print("Iter: {:5d} | Cost: {:0.7f} | Acc train: {:0.7f} | Acc validation: {:0.7f} "
              "".format(it+1, c, acc_train, acc_test))

    return train_accuracies, test_accuracies, costs, var

# load parity data
data = np.loadtxt("data/parity.txt")
X = data[:, :-1]
Y = data[:, -1]
Y = Y * 2 - np.ones(len(Y))  # shift label from {0, 1} to {-1, 1}

# initialize weight layers
np.random.seed(0)
num_qubits = 4
num_layers = 2
var_init = (0.01 * np.random.randn(num_layers, num_qubits, 3), 0.0)

# create optimizer
opt = NesterovMomentumOptimizer(0.5)
batch_size = 5

# train the variational classifier
var = var_init
for it in range(25):

    # Update the weights by one optimizer step
    batch_index = np.random.randint(0, len(X), (batch_size, ))
    X_batch = X[batch_index]
    Y_batch = Y[batch_index]
    var = opt.step(lambda v: cost(v, X_batch, Y_batch), var)

    # Compute accuracy
    predictions = [np.sign(variational_classifier(var, x=x)) for x in X]
    acc = accuracy(Y, predictions)
        eta2 = 0.1
        opt.update_stepsize(eta2)
        assert opt._stepsize == eta2


def reset(opt):
    if getattr(opt, "reset", None):
        opt.reset()


@pytest.mark.parametrize(
    "opt, opt_name",
    [
        (GradientDescentOptimizer(stepsize), "gd"),
        (MomentumOptimizer(stepsize, momentum=gamma), "moment"),
        (NesterovMomentumOptimizer(stepsize, momentum=gamma), "nest"),
        (AdagradOptimizer(stepsize), "ada"),
        (RMSPropOptimizer(stepsize, decay=gamma), "rms"),
        (AdamOptimizer(stepsize, beta1=gamma, beta2=delta), "adam"),
        (RotosolveOptimizer(), "roto"),
    ],
)
class TestOverOpts:
    """Tests keywords, multiple arguements, and non-training arguments in relevent optimizers"""
    def test_kwargs(self, mocker, opt, opt_name, tol):
        """Test that the keywords get passed and alter the function"""
        class func_wrapper:
            @staticmethod
            def func(x, c=1.0):
                return (x - c)**2
예제 #15
0
batch_size = 5

# calculate number of batches
batches = len(X_train) // batch_size

# select number of epochs
n_epochs = 5

# draw random quantum node weights
theta = strong_ent_layers_uniform(n_layers, n_qubits, seed=15)

# train the variational classifier

# start of main learning loop
# build the optimizer object
pennylane_opt = NesterovMomentumOptimizer()

log = []
# split training data into batches
X_batches = np.array_split(np.arange(len(X_train)), batches)
for it, batch_index in enumerate(chain(*(n_epochs * [X_batches]))):
    # Update the weights by one optimizer step
    batch_cost = \
        lambda t: cost(t, X_train[batch_index], e_train[batch_index])
    theta = pennylane_opt.step(batch_cost, theta)
    log.append({"theta": theta})
# end of learning loop

# convert scores to classes
scores = np.array([circuit(theta, x=x) for x in X_test])
y_pred = sgn(scores)
예제 #16
0
def get_opt():
    opt = NesterovMomentumOptimizer(0.5)
    batch_size = 5
    return (opt, batch_size)