data = pd.read_csv("rodents.csv", delimiter=";", names = headers,header=None, skiprows=1) data.dropna() # Convert gender to 0 or 1 label_enc =preprocessing.LabelEncoder() data['typez'] = data['typez'].apply(lambda x: 1 if str(x).strip() == 'rat' else -1) data.head() y = data["typez"] rodents_np = data.to_numpy() rodents_fmt = [(rodents[:2], rodents[2]) for rodents in rodents_np] weights,_ = pc.pla(rodents_fmt) print("-------",weights) colors = 'rg' for target, name in (zip([1,-1],['rat','mouse'])): #print(idx) d = data[data['typez']==target] if(target == 1): color_idx = target else: color_idx = 0 print(data['typez']) plt.scatter(data['weight'],data['height'],c=colors[color_idx], label=name)
return output print(perceptron([1, 2, 3, 4, 5], [1, 1, 2, 1, 1])) #part 2 # 1 Make a new scatter plot with datapoints of weights vs heights. Choose different colors for rats and mice import pandas as pd import perceptron as pc rodent = pd.read_csv("rodents.csv", sep=';') rodent = rodent.dropna() rodent["type"] = rodent["type"].apply(lambda x: 1 if str(x).strip() == "rat" else -1) #print(rodent) rodent_np = rodent.to_numpy() rodent_fmt = [(data[:2], data[2]) for data in rodent_np] weights = pc.pla(rodent_fmt) #print(weights) colors = "rb" for target, name in (zip([1, -1], ["rat", "mouse"])): #print(idx) data = rodent[rodent["type"] == target] color_idx = target if target == 1 else 0 plt.scatter(data["weight"], data["height"], c=colors[color_idx], label=name) # plt.title("mesures for mice and rats") plt.xlabel("weight") plt.ylabel("height") plt.legend()