예제 #1
0
파일: ee_imp.py 프로젝트: StanfordVL/perls2
    def _compile_jit_functions(self):
        """
        Helper function to incur the cost of compiling jit functions.
        """
        dummy_mat = np.eye(3)
        dummy_quat = np.zeros(4)
        dummy_quat[-1] = 1.
        T.mat2quat(dummy_mat)
        T.quat2mat(dummy_quat)

        _, _, _, dummy_nullspace_matrix = C.opspace_matrices(
            mass_matrix=self.model.mass_matrix,
            J_full=self.model.J_full,
            J_pos=self.model.J_pos,
            J_ori=self.model.J_ori,
        )

        C.orientation_error(dummy_mat, dummy_mat)
예제 #2
0
    def _compile_jit_functions(self):
        dummy_mat = np.eye(3)
        dummy_quat = np.zeros(4)
        dummy_quat[-1] = 1.
        T.mat2quat(dummy_mat)
        T.quat2mat(dummy_quat)

        _, _, _, dummy_nullspace_matrix = C.opspace_matrices(
            mass_matrix=self.model.mass_matrix,
            J_full=self.model.J_full,
            J_pos=self.model.J_pos,
            J_ori=self.model.J_ori,
        )
        C.orientation_error(dummy_mat, dummy_mat)

        C.nullspace_torques(
            mass_matrix=self.model.mass_matrix,
            nullspace_matrix=dummy_nullspace_matrix,
            initial_joint=self.goal_posture,
            joint_pos=self.model.joint_pos,
            joint_vel=self.model.joint_vel,
        )
예제 #3
0
    def compute_error(self, goal_state, new_state):
        """ Compute the error between current state and goal state.
        For OpSpace Demos, this is position and orientation error.
        """
        goal_pos = goal_state[:3]
        new_pos = new_state[:3]
        # Check or convert to correct orientation
        goal_ori = T.convert_euler_quat_2mat(goal_state[3:])
        new_ori = T.convert_euler_quat_2mat(new_state[3:])

        pos_error = np.subtract(goal_pos, new_pos)
        ori_error = C.orientation_error(goal_ori, new_ori)

        return np.hstack((pos_error, ori_error))
예제 #4
0
파일: ee_imp.py 프로젝트: StanfordVL/perls2
    def run_controller(self):
        """ Calculate torques to acheive goal.

        See controllers documentation for more information on EEImpedance
            control. Set goal must be called before running controller.

        Args:
            None
        Returns:
            torques (list): 7f list of torques to command.

        Run impedance controllers.
        """
        # Check if the goal has been set.
        if self.goal_pos is None or self.goal_ori is None:
            raise ValueError("Set goal first.")

        # Default desired velocities and accelerations are zero.
        desired_vel_pos = np.asarray([0.0, 0.0, 0.0])
        desired_acc_pos = np.asarray([0.0, 0.0, 0.0])
        desired_vel_ori = np.asarray([0.0, 0.0, 0.0])
        desired_acc_ori = np.asarray([0.0, 0.0, 0.0])

        # Get interpolated goal for position
        if self.interpolator_pos is not None:
            desired_pos = self.interpolator_pos.get_interpolated_goal()
        else:
            desired_pos = np.array(self.goal_pos)

        # Get interpolated goal for orientation.
        if self.interpolator_ori is not None:

            desired_ori = T.quat2mat(
                self.interpolator_ori.get_interpolated_goal())
            ori_error = C.orientation_error(desired_ori, self.model.ee_ori_mat)
        else:
            desired_ori = np.array(self.goal_ori)

            ori_error = C.orientation_error(desired_ori, self.model.ee_ori_mat)

        # Calculate desired force, torque at ee using control law and error.
        position_error = desired_pos - self.model.ee_pos
        # print("pos_error {}".format(position_error))
        vel_pos_error = desired_vel_pos - self.model.ee_pos_vel
        desired_force = (
            np.multiply(np.array(position_error), np.array(self.kp[0:3])) +
            np.multiply(vel_pos_error, self.kv[0:3])) + desired_acc_pos

        vel_ori_error = desired_vel_ori - self.model.ee_ori_vel
        desired_torque = (
            np.multiply(np.array(ori_error), np.array(self.kp[3:])) +
            np.multiply(vel_ori_error, self.kv[3:])) + desired_acc_ori

        # Calculate Operational Space mass matrix and nullspace.
        lambda_full, lambda_pos, lambda_ori, nullspace_matrix = \
            C.opspace_matrices(self.model.mass_matrix,
                               self.model.J_full,
                               self.model.J_pos,
                               self.model.J_ori)

        self.nullspace_matrix = nullspace_matrix

        # If uncoupling position and orientation use separated lambdas.
        if self.uncoupling:
            decoupled_force = np.dot(lambda_pos, desired_force)
            decoupled_torque = np.dot(lambda_ori, desired_torque)
            decoupled_wrench = np.concatenate(
                [decoupled_force, decoupled_torque])
        else:
            desired_wrench = np.concatenate([desired_force, desired_torque])
            decoupled_wrench = np.dot(lambda_full, desired_wrench)

        # Project torques that acheive goal into task space.
        self.torques = np.dot(
            self.model.J_full.T,
            decoupled_wrench) + self.model.torque_compensation

        return self.torques