model = persalys.SymbolicPhysicalModel('aModelPhys', [X0, X1], [Y0], ['sin(X0)+8*X1']) anOTStudy.add(model) # Design of Experiment ## aDesign = persalys.GridDesignOfExperiment('aDesign_1', model, [[0.9, 1.1], [1.8, 2.2]]) anOTStudy.add(aDesign) aDesign.run() print('outs=', aDesign.getResult().getDesignOfExperiment().getOutputSample()) # Design of Experiment ## filename = 'normal.csv' ot.Normal(3).getSample(10).exportToCSVFile(filename) aDesign2 = persalys.ImportedDesignOfExperiment('aDesign_2', model, filename, [0, 2]) anOTStudy.add(aDesign2) aDesign2.run() print('outs=', aDesign2.getResult().getDesignOfExperiment().getOutputSample()) # Design of Experiment ## aDesign3 = persalys.ProbabilisticDesignOfExperiment('aDesign_3', model, 10, 'QUASI_MONTE_CARLO') anOTStudy.add(aDesign3) aDesign3.run() print('outs=', aDesign3.getResult().getDesignOfExperiment().getOutputSample()) # Design of Experiment ## aDesign4 = persalys.FixedDesignOfExperiment('aDesign_4', model)
# fixed design ## ot.RandomGenerator.SetSeed(0) fixedDesign = persalys.FixedDesignOfExperiment('fixedDesign', symbolicModel) inputSample = ot.LHSExperiment(ot.ComposedDistribution([ot.Uniform(0., 10.), ot.Uniform(0., 10.)]), 10).generate() inputSample.stack(ot.Sample(10, [0.5])) fixedDesign.setOriginalInputSample(inputSample) fixedDesign.run() myStudy.add(fixedDesign) # grid ## values = [[0.5+i*1.5 for i in range(7)], [0.5+i*1.5 for i in range(7)], [1]] grid = persalys.GridDesignOfExperiment('grid', symbolicModel, values) myStudy.add(grid) # importDesign ## importDesign = persalys.ImportedDesignOfExperiment('importDesign', symbolicModel, 'data.csv', [0, 2, 3]) importDesign.run() myStudy.add(importDesign) # onePointDesign ## onePointDesign = persalys.GridDesignOfExperiment('onePointDesign', pythonModel) myStudy.add(onePointDesign) # twoPointsDesign ## twoPointsDesign = persalys.GridDesignOfExperiment('twoPointsDesign', pythonModel, [[0.2], [1.2], [-0.2, 1.]]) myStudy.add(twoPointsDesign) # fixed DataModel ## fixedDataModel = persalys.DataModel('fixedDataModel', fixedDesign.getOriginalInputSample(), fixedDesign.getResult().getDesignOfExperiment().getOutputSample()) myStudy.add(fixedDataModel)
filename = 'données.csv' ot.RandomGenerator_SetSeed(0) ot.Normal(3).getSample(10).exportToCSVFile(filename) inColumns = [0, 2] # Model 1 model = persalys.DataModel('myDataModel', filename, inColumns) myStudy.add(model) print(model) # Model 2 model2 = persalys.SymbolicPhysicalModel( 'SM', [persalys.Input('A'), persalys.Input('B')], [persalys.Output('S')], ['A+B+2']) myStudy.add(model2) importedDOE = persalys.ImportedDesignOfExperiment('doeI', model2, filename, inColumns) myStudy.add(importedDOE) # script script = myStudy.getPythonScript() print(script) # save xmlFileName = 'file_with_données.xml' myStudy.save(xmlFileName) # open s = persalys.Study.Open('file_with_données.xml') print(s.getPythonScript()) os.remove(filename)
# Designs of Experiment ## # design 2 ## values = [[0.5 + i * 1.5 for i in range(7)], [0.5 + i * 1.5 for i in range(7)], [1]] design_2 = persalys.GridDesignOfExperiment('design_2', model1, values) myStudy.add(design_2) # design 4 ## probaDesign = persalys.ProbabilisticDesignOfExperiment('probaDesign', model1, 100, "MONTE_CARLO") probaDesign.run() myStudy.add(probaDesign) design_3 = persalys.ImportedDesignOfExperiment('design_3', model1, 'data.csv', [0, 2, 3]) design_3.run() myStudy.add(design_3) # 1- meta model1 ## # 1-a Kriging ## kriging = persalys.KrigingAnalysis('kriging', probaDesign) kriging.setBasis(ot.LinearBasisFactory(2).build()) kriging.setCovarianceModel(ot.MaternModel(2)) kriging.setTestSampleValidation(True) kriging.setKFoldValidation(True) kriging.setInterestVariables(['y0', 'y1']) myStudy.add(kriging) # 1-b Chaos ##