def test_full_na(): """ A full Na integration test. """ # Pulls Na wavs from cloudstor. NA_WAVS_LINK = "https://cloudstor.aarnet.edu.au/plus/s/LnNyNa20GQ8qsPC/download" download_example_data(NA_WAVS_LINK) na_dir = join(DATA_BASE_DIR, "na/") os.rm_dir(na_dir) os.makedirs(na_dir) org_wav_dir = join(na_dir, "org_wav/") os.rename(join(DATA_BASE_DIR, "na_wav/"), org_wav_dir) tgt_wav_dir = join(na_dir, "wav/") NA_REPO_URL = "https://github.com/alexis-michaud/na-data.git" with cd(DATA_BASE_DIR): subprocess.run(["git", "clone", NA_REPO_URL, "na/xml/"], check=True) # Note also that this subdirectory only containts TEXTs, so this integration # test will include only Na narratives, not wordlists. na_xml_dir = join(DATA_BASE_DIR, "na/xml/TEXT/F4") label_dir = join(DATA_BASE_DIR, "na/label") label_type = "phonemes_and_tones" na.prepare_labels(label_type, org_xml_dir=na_xml_dir, label_dir=label_dir) tgt_feat_dir = join(DATA_BASE_DIR, "na/feat") # TODO Make this fbank_and_pitch, but then I need to install kaldi on ray # or run the tests on GPUs on slug or doe. feat_type = "fbank" na.prepare_feats(feat_type, org_wav_dir=org_wav_dir, tgt_wav_dir=tgt_wav_dir, feat_dir=tgt_feat_dir, org_xml_dir=na_xml_dir, label_dir=label_dir) from shutil import copyfile copyfile("persephone/tests/test_sets/valid_prefixes.txt", join(na_dir, "valid_prefixes.txt")) copyfile("persephone/tests/test_sets/test_prefixes.txt", join(na_dir, "test_prefixes.txt")) na.make_data_splits(label_type, train_rec_type="text", tgt_dir=na_dir) # Training with texts exp_dir = experiment.prep_exp_dir(directory=EXP_BASE_DIR) na_corpus = na.Corpus(feat_type, label_type, train_rec_type="text", tgt_dir=na_dir) na_corpus_reader = corpus_reader.CorpusReader(na_corpus) model = rnn_ctc.Model(exp_dir, na_corpus_reader, num_layers=3, hidden_size=400) model.train(min_epochs=30) # Ensure LER < 0.20 ler = get_test_ler(exp_dir) assert ler < 0.2
def test_load_saver(): tgt_dir = Path(config.TEST_DATA_PATH) / "na" na_corpus = na.Corpus("fbank_and_pitch", "phonemes_and_tones", tgt_dir=tgt_dir) na_reader = corpus_reader.CorpusReader(na_corpus) model_prefix_path = "/home/oadams/code/mam/exp/252/model/model_best.ckpt" saver = tf.train.Saver()
def test_feed_batch(): tgt_dir = Path(config.TEST_DATA_PATH) / "na" na_corpus = na.Corpus("fbank_and_pitch", "phonemes_and_tones", tgt_dir=tgt_dir) na_reader = corpus_reader.CorpusReader(na_corpus) model_path = "/home/oadams/code/mam/exp/252/model/model_best.ckpt" graph = model.load_graph(model_path) batch = next(na_reader.untranscribed_batch_gen()) print(model.decode(graph, batch))
def test_reuse_model(preprocess_na): tgt_dir = Path(config.TEST_DATA_PATH) / "na" na_corpus = na.Corpus("fbank_and_pitch", "phonemes_and_tones", tgt_dir=tgt_dir) na_reader = corpus_reader.CorpusReader(na_corpus) logging.info("na_corpus {}".format(na_corpus)) logging.info("na_corpus.get_untranscribed_fns():") logging.info(pprint.pformat(na_corpus.get_untranscribed_fns())) # TODO Currently assumes we're on slug. Need to package up the model and # put it on cloudstor, then create a fixture to download it. exp_dir = prep_exp_dir(directory=config.TEST_EXP_PATH) model = rnn_ctc.Model(exp_dir, na_reader, num_layers=3, hidden_size=400) model.transcribe( restore_model_path="/home/oadams/code/mam/exp/252/model/model_best.ckpt" )
def test_load_meta(): tgt_dir = Path(config.TEST_DATA_PATH) / "na" na_corpus = na.Corpus("fbank_and_pitch", "phonemes_and_tones", tgt_dir=tgt_dir) na_reader = corpus_reader.CorpusReader(na_corpus) tf.reset_default_graph() model_prefix_path = "/home/oadams/code/mam/exp/252/model/model_best.ckpt" #model_prefix_path = "/home/oadams/code/persephone/testing/exp/39/model/model_best.ckpt" #loaded_graph = model.load_graph(model_prefix_path) metagraph = model.load_metagraph(model_prefix_path) #imported_meta = tf.train.import_meta_graph(model_prefix_path + ".meta") #print(type(imported_meta)) #print(dir(imported_meta)) #print(dir(imported_meta)) #print(dir(imported_meta.restore)) #exp_dir = prep_exp_dir(directory=config.TEST_EXP_PATH) #new_mod = rnn_ctc.Model(exp_dir, na_reader) #with tf.Session() as sess: # sess.run(tf.global_variables_initializer()) # for v in tf.get_default_graph().get_collection("train_op"): # print(v) # return #with tf.Session(graph=loaded_graph) as sess: with tf.Session() as sess: with tf.device("/cpu:0"): metagraph.restore(sess, model_prefix_path) #imported_meta.restore(sess, tf.train.latest_checkpoint('./')) #imported_meta.restore(sess, model_prefix_path) #print([x for x in tf.get_default_graph().get_operations() if "Placeholder" in x.type]) print([ x for x in sess.graph.get_operations() if "Placeholder" in x.type ]) print(dir(sess)) print(sess.graph) print(dir(sess.graph)) for v in tf.get_default_graph().get_collection("variables"): print(v) for v in tf.get_default_graph().get_collection("trainable_variables"): print(v) for v in tf.get_default_graph().get_collection("train_op"): print(v) print(tf.get_default_graph().get_all_collection_keys()) pprint.pprint([ repr(op) for op in tf.get_default_graph().get_operations() if "hyp" in op.name ]) pprint.pprint([ repr(op) for op in tf.get_default_graph().get_operations() if "Placeholder" in op.type ]) pprint.pprint([ repr(op) for op in tf.get_default_graph().get_operations() if "SparseToDense" in op.type ]) all_prefixes = [] all_hyps = [] for batch_i, batch in enumerate(na_reader.untranscribed_batch_gen()): batch_x, batch_x_lens, feat_fn_batch = batch prefixes = [ fn.split("/")[-1].split(".")[:2] for fn in feat_fn_batch ] #ph_batch_x = tf.placeholder( # tf.float32, [None, None, na_reader.corpus.num_feats]) #ph_batch_x_lens = tf.placeholder(tf.int32, [None]) #ph_batch_y = tf.sparse_placeholder(tf.int32) #feed_dict = {"batch_x:0": batch_x, # "batch_x_lens:0": batch_x_lens} feed_dict = { "Placeholder:0": batch_x, "Placeholder_1:0": batch_x_lens } #[dense_decoded] = sess.run(["hyp_dense_decoded:0"], # feed_dict=feed_dict) [dense_decoded] = sess.run(["SparseToDense:0"], feed_dict=feed_dict) print(dense_decoded) hyps = na_reader.human_readable(dense_decoded) print(hyps) print(na_reader.corpus.INDEX_TO_LABEL) all_hyps.extend(["".join(hyp) for hyp in hyps]) all_prefixes.extend([".".join(prefix) for prefix in prefixes]) print( results.fmt_latex_untranscribed( all_hyps, all_prefixes, Path("benevolence_and_funeral_custom.tex")))