def test_write_object(): """Test writing of a object. """ tmpfile = tempfile.NamedTemporaryFile() storage = NetCDFStorage(tmpfile.name, mode='w') #use names we might encounter in simulation envname = 'vacuum' modname = 'ExpandedEnsembleSampler' varname = 'energy' view = NetCDFStorageView(storage, envname, modname) obj = {0: 0} view.write_object('singleton', obj) for iteration in range(10): obj = {'iteration': iteration} view.write_object(varname, obj, iteration=iteration) for iteration in range(10): obj = storage.get_object(envname, modname, varname, iteration=iteration) assert ('iteration' in obj) assert (obj['iteration'] == iteration)
def test_write_object(): """Test writing of a object. """ tmpfile = tempfile.NamedTemporaryFile() storage = NetCDFStorage(tmpfile.name, mode='w') #use names we might encounter in simulation envname = 'vacuum' modname = 'ExpandedEnsembleSampler' varname = 'energy' view = NetCDFStorageView(storage, envname, modname) obj = { 0 : 0 } view.write_object('singleton', obj) for iteration in range(10): obj = { 'iteration' : iteration } view.write_object(varname, obj, iteration=iteration) for iteration in range(10): obj = storage.get_object(envname, modname, varname, iteration=iteration) assert ('iteration' in obj) assert (obj['iteration'] == iteration)
def test_write_object(): """Test writing of a object. """ tmpfile = tempfile.NamedTemporaryFile() storage = NetCDFStorage(tmpfile.name, mode='w') view = NetCDFStorageView(storage, 'envname', 'modname') obj = { 0 : 0 } view.write_object('singleton', obj) for iteration in range(10): obj = { 'iteration' : iteration } view.write_object('varname', obj, iteration=iteration) for iteration in range(10): obj = storage.get_object('/envname/modname/varname', iteration=iteration) assert ('iteration' in obj) assert (obj['iteration'] == iteration)
def test_write_object(): """Test writing of a object. """ tmpfile = tempfile.NamedTemporaryFile() storage = NetCDFStorage(tmpfile.name, mode='w') view = NetCDFStorageView(storage, 'envname', 'modname') obj = { 0 : 0 } view.write_object('singleton', obj) for iteration in range(10): obj = { 'iteration' : iteration } view.write_object('varname', obj, iteration=iteration) for iteration in range(10): encoded = storage._ncfile['/envname/modname/varname'][iteration] obj = json.loads(encoded) assert ('iteration' in obj) assert (obj['iteration'] == iteration)
class MultiTargetDesign(object): """ Multi-objective design using self-adjusted mixture sampling with additional recursion steps that update target weights on the fly. Parameters ---------- samplers : list of SAMSSampler The SAMS samplers whose relative partition functions go into the design objective computation. sampler_exponents : dict of SAMSSampler : float samplers.keys() are the samplers, and samplers[key] log_target_probabilities : dict of hashable object : float log_target_probabilities[key] is the computed log objective function (target probability) for chemical state `key` verbose : bool If True, verbose output is printed. """ def __init__(self, target_samplers, storage=None, verbose=False): """ Initialize a multi-objective design sampler with the specified target sampler powers. Parameters ---------- target_samplers : dict target_samplers[sampler] is the exponent associated with SAMS sampler `sampler` in the multi-objective design. storage : NetCDFStorage, optional, default=None If specified, will use the storage layer to write trajectory data. verbose : bool, optional, default=False If true, will print verbose output The target sampler weights for N samplers with specified exponents \alpha_n are given by \pi_{nk} \propto \prod_{n=1}^N Z_{nk}^{alpha_n} where \pi_{nk} is the target weight for sampler n state k, and Z_{nk} is the relative partition function of sampler n among states k. Examples -------- Set up a mutation sampler to maximize implicit solvent hydration free energy. >>> from perses.tests.testsystems import AlanineDipeptideTestSystem >>> testsystem = AlanineDipeptideTestSystem() >>> # Set up target samplers. >>> target_samplers = { testsystem.sams_samplers['implicit'] : 1.0, testsystem.sams_samplers['vacuum'] : -1.0 } >>> # Set up the design sampler. >>> designer = MultiTargetDesign(target_samplers) """ # Store target samplers. self.sampler_exponents = target_samplers self.samplers = list(target_samplers.keys()) self.storage = None if storage is not None: self.storage = NetCDFStorageView(storage, modname=self.__class__.__name__) # Initialize storage for target probabilities. self.log_target_probabilities = dict() self.verbose = verbose self.iteration = 0 @property def state_keys(self): return self.log_target_probabilities.keys() def update_samplers(self): """ Update all samplers. """ for sampler in self.samplers: sampler.update() def update_target_probabilities(self): """ Update all target probabilities. """ # Gather list of all keys. state_keys = set() for sampler in self.samplers: for key in sampler.state_keys: state_keys.add(key) # Compute unnormalized log target probabilities. log_target_probabilities = { key : 0.0 for key in state_keys } for (sampler, log_weight) in self.sampler_exponents.items(): for key in sampler.state_keys: log_target_probabilities[key] += log_weight * sampler.logZ[key] # Normalize log_sum = log_sum_exp(log_target_probabilities) for key in log_target_probabilities: log_target_probabilities[key] -= log_sum # Store. self.log_target_probabilities = log_target_probabilities if self.verbose: print("log_target_probabilities = %s" % str(self.log_target_probabilities)) if self.storage: self.storage.write_object('log_target_probabilities', self.log_target_probabilities, iteration=self.iteration) def update(self): """ Run one iteration of the sampler. """ if self.verbose: print("*" * 80) print("MultiTargetDesign sampler iteration %8d" % self.iteration) self.update_samplers() self.update_target_probabilities() self.iteration += 1 if self.storage: self.storage.sync() if self.verbose: print("*" * 80) def run(self, niterations=1): """ Run the multi-target design sampler for the specified number of iterations. Parameters ---------- niterations : int The number of iterations to run the sampler for. """ # Update all samplers. for iteration in range(niterations): self.update()
class ExpandedEnsembleSampler(object): """ Method of expanded ensembles sampling engine. The acceptance criteria is given in the reference document. Roughly, the proposal scheme is: * Draw a proposed chemical state k', and calculate reverse proposal probability * Conditioned on k' and the current positions x, generate new positions with the GeometryEngine * With new positions, jump to a hybrid system at lambda=0 * Anneal from lambda=0 to lambda=1, accumulating work * Jump from the hybrid system at lambda=1 to the k' system, and compute reverse GeometryEngine proposal * Add weight of chemical states k and k' to acceptance probabilities Properties ---------- sampler : MCMCSampler The MCMC sampler used for updating positions. proposal_engine : ProposalEngine The ProposalEngine to use for proposing new sampler states and topologies. system_generator : SystemGenerator The SystemGenerator to use for creating System objects following proposals. state : hashable object The current sampler state. Can be any hashable object. states : set of hashable object All known states. iteration : int Iterations completed. naccepted : int Number of accepted thermodynamic/chemical state changes. nrejected : int Number of rejected thermodynamic/chemical state changes. number_of_state_visits : dict of state_key Cumulative counts of visited states. verbose : bool If True, verbose output is printed. References ---------- [1] Lyubartsev AP, Martsinovski AA, Shevkunov SV, and Vorontsov-Velyaminov PN. New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles. JCP 96:1776, 1992 http://dx.doi.org/10.1063/1.462133 Examples -------- >>> # Create a test system >>> test = testsystems.AlanineDipeptideVacuum() >>> # Create a SystemGenerator and rebuild the System. >>> from perses.rjmc.topology_proposal import SystemGenerator >>> system_generator = SystemGenerator(['amber99sbildn.xml'], forcefield_kwargs={'implicitSolvent' : None, 'constraints' : None }, nonperiodic_forcefield_kwargs={'nonbondedMethod' : app.NoCutoff}) >>> test.system = system_generator.build_system(test.topology) >>> # Create a sampler state. >>> sampler_state = SamplerState(system=test.system, positions=test.positions) >>> # Create a thermodynamic state. >>> thermodynamic_state = ThermodynamicState(system=test.system, temperature=298.0*unit.kelvin) >>> # Create an MCMC sampler >>> mcmc_sampler = MCMCSampler(thermodynamic_state, sampler_state) >>> # Turn off verbosity >>> mcmc_sampler.verbose = False >>> # Create an Expanded Ensemble sampler >>> from perses.rjmc.topology_proposal import PointMutationEngine >>> from perses.rjmc.geometry import FFAllAngleGeometryEngine >>> geometry_engine = FFAllAngleGeometryEngine(metadata={}) >>> allowed_mutations = [[('2','ALA')],[('2','VAL'),('2','LEU')]] >>> proposal_engine = PointMutationEngine(test.topology, system_generator, max_point_mutants=1, chain_id='1', proposal_metadata=None, allowed_mutations=allowed_mutations) >>> exen_sampler = ExpandedEnsembleSampler(mcmc_sampler, test.topology, 'ACE-ALA-NME', proposal_engine, geometry_engine) >>> # Run the sampler >>> exen_sampler.run() """ def __init__(self, sampler, topology, state_key, proposal_engine, geometry_engine, log_weights=None, options=None, platform=None, envname=None, storage=None, ncmc_write_interval=1): """ Create an expanded ensemble sampler. p(x,k) \propto \exp[-u_k(x) + g_k] where g_k is the log weight. Parameters ---------- sampler : MCMCSampler MCMCSampler initialized with current SamplerState topology : simtk.openmm.app.Topology Current topology state : hashable object Current chemical state proposal_engine : ProposalEngine ProposalEngine to use for proposing new chemical states geometry_engine : GeometryEngine GeometryEngine to use for dimension matching log_weights : dict of object : float Log weights to use for expanded ensemble biases. options : dict, optional, default=dict() Options for initializing switching scheme, such as 'timestep', 'nsteps', 'functions' for NCMC platform : simtk.openmm.Platform, optional, default=None Platform to use for NCMC switching. If `None`, default (fastest) platform is used. storage : NetCDFStorageView, optional, default=None If specified, use this storage layer. ncmc_write_interval : int, default 1 How frequently to write out NCMC protocol steps. """ # Keep copies of initializing arguments. # TODO: Make deep copies? self.sampler = sampler self._pressure = sampler.thermodynamic_state.pressure self._temperature = sampler.thermodynamic_state.temperature self._omm_topology = topology self.topology = md.Topology.from_openmm(topology) self.state_key = state_key self.proposal_engine = proposal_engine self.log_weights = log_weights if self.log_weights is None: self.log_weights = dict() self.storage = None if storage is not None: self.storage = NetCDFStorageView(storage, modname=self.__class__.__name__) # Initialize self.iteration = 0 option_names = ['timestep', 'nsteps', 'functions', 'nsteps_mcmc', 'splitting'] if options is None: options = dict() for option_name in option_names: if option_name not in options: options[option_name] = None if options['splitting']: self._ncmc_splitting = options['splitting'] else: self._ncmc_splitting = "V R O H R V" if options['nsteps']: self._switching_nsteps = options['nsteps'] self.ncmc_engine = NCMCEngine(temperature=self.sampler.thermodynamic_state.temperature, timestep=options['timestep'], nsteps=options['nsteps'], functions=options['functions'], integrator_splitting=self._ncmc_splitting, platform=platform, storage=self.storage, write_ncmc_interval=ncmc_write_interval) else: self._switching_nsteps = 0 if options['nsteps_mcmc']: self._n_iterations_per_update = options['nsteps_mcmc'] else: self._n_iterations_per_update = 100 self.geometry_engine = geometry_engine self.naccepted = 0 self.nrejected = 0 self.number_of_state_visits = dict() self.verbose = False self.pdbfile = None # if not None, write PDB file self.geometry_pdbfile = None # if not None, write PDB file of geometry proposals self.accept_everything = False # if True, will accept anything that doesn't lead to NaNs self.logPs = list() self.sampler.minimize(max_iterations=40) @property def state_keys(self): return self.log_weights.keys() def get_log_weight(self, state_key): """ Get the log weight of the specified state. Parameters ---------- state_key : hashable object The state key (e.g. chemical state key) to look up. Returns ------- log_weight : float The log weight of the provided state key. Notes ----- This adds the key to the self.log_weights dict. """ if state_key not in self.log_weights: self.log_weights[state_key] = 0.0 return self.log_weights[state_key] def _system_to_thermodynamic_state(self, system): """ Given an OpenMM system object, create a corresponding ThermodynamicState that has the same temperature and pressure as the current thermodynamic state. Parameters ---------- system : openmm.System The OpenMM system for which to create the thermodynamic state Returns ------- new_thermodynamic_state : openmmtools.states.ThermodynamicState The thermodynamic state object representing the given system """ return ThermodynamicState(system, temperature=self._temperature, pressure=self._pressure) def _geometry_forward(self, topology_proposal, old_sampler_state): """ Run geometry engine to propose new positions and compute logP Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. old_sampler_state : openmmtools.states.SamplerState Configurational properties of the old system atoms. Returns ------- new_sampler_state : openmmtools.states.SamplerState Configurational properties of new atoms proposed by geometry engine calculation. geometry_logp_propose : float The log probability of the forward-only proposal """ if self.verbose: print("Geometry engine proposal...") # Generate coordinates for new atoms and compute probability ratio of old and new probabilities. initial_time = time.time() new_positions, geometry_logp_propose = self.geometry_engine.propose(topology_proposal, old_sampler_state.positions, self.sampler.thermodynamic_state.beta) if self.verbose: print('proposal took %.3f s' % (time.time() - initial_time)) if self.geometry_pdbfile is not None: print("Writing proposed geometry...") from simtk.openmm.app import PDBFile PDBFile.writeFile(topology_proposal.new_topology, new_positions, file=self.geometry_pdbfile) self.geometry_pdbfile.flush() new_sampler_state = SamplerState(new_positions, box_vectors=old_sampler_state.box_vectors) return new_sampler_state, geometry_logp_propose def _geometry_reverse(self, topology_proposal, new_sampler_state, old_sampler_state): """ Run geometry engine reverse calculation to determine logP of proposing the old positions based on the new positions Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. new_sampler_state : openmmtools.states.SamplerState Configurational properties of the new atoms. old_sampler_state : openmmtools.states.SamplerState Configurational properties of the old atoms. Returns ------- geometry_logp_reverse : float The log probability of the proposal for the given transformation """ if self.verbose: print("Geometry engine logP_reverse calculation...") initial_time = time.time() geometry_logp_reverse = self.geometry_engine.logp_reverse(topology_proposal, new_sampler_state.positions, old_sampler_state.positions, self.sampler.thermodynamic_state.beta) if self.verbose: print('calculation took %.3f s' % (time.time() - initial_time)) return geometry_logp_reverse def _ncmc_hybrid(self, topology_proposal, old_sampler_state, new_sampler_state): """ Run a hybrid NCMC protocol from lambda = 0 to lambda = 1 Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. old_sampler_State : openmmtools.states.SamplerState SamplerState of old system at the beginning of NCMCSwitching new_sampler_state : openmmtools.states.SamplerState SamplerState of new system at the beginning of NCMCSwitching Returns ------- old_final_sampler_state : openmmtools.states.SamplerState SamplerState of old system at the end of switching new_final_sampler_state : openmmtools.states.SamplerState SamplerState of new system at the end of switching logP_work : float The NCMC work contribution to the log acceptance probability (Eq. 44) logP_energy : float The contribution of switching to and from the hybrid system to the acceptance probability (Eq. 45) """ if self.verbose: print("Performing NCMC switching") initial_time = time.time() [ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid] = self.ncmc_engine.integrate(topology_proposal, old_sampler_state, new_sampler_state, iteration=self.iteration) if self.verbose: print('NCMC took %.3f s' % (time.time() - initial_time)) # Check that positions are not NaN if new_sampler_state.has_nan(): raise Exception("Positions are NaN after NCMC insert with %d steps" % self._switching_nsteps) return ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid def _geometry_ncmc_geometry(self, topology_proposal, sampler_state, old_log_weight, new_log_weight): """ Use a hybrid NCMC protocol to switch from the old system to new system Will calculate new positions for the new system first, then give both sets of positions to the hybrid NCMC integrator, and finally use the final positions of the old and new systems to calculate the reverse geometry probability Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. sampler_state : openmmtools.states.SamplerState Configurational properties of old atoms at the beginning of the NCMC switching. old_log_weight : float Chemical state weight from SAMSSampler new_log_weight : float Chemical state weight from SAMSSampler Returns ------- logP_accept : float Log of acceptance probability of entire Expanded Ensemble switch (Eq. 25 or 46) ncmc_new_sampler_state : openmmtools.states.SamplerState Configurational properties of new atoms at the end of the NCMC switching. """ if self.verbose: print("Updating chemical state with geometry-ncmc-geometry scheme...") from perses.tests.utils import compute_potential logP_chemical_proposal = topology_proposal.logp_proposal old_thermodynamic_state = self.sampler.thermodynamic_state new_thermodynamic_state = self._system_to_thermodynamic_state(topology_proposal.new_system) initial_reduced_potential = feptasks.compute_reduced_potential(old_thermodynamic_state, sampler_state) logP_initial_nonalchemical = - initial_reduced_potential new_geometry_sampler_state, logP_geometry_forward = self._geometry_forward(topology_proposal, sampler_state) #if we aren't doing any switching, then skip running the NCMC engine at all. if self._switching_nsteps == 0: ncmc_old_sampler_state = sampler_state ncmc_new_sampler_state = new_geometry_sampler_state logP_work = 0.0 logP_initial_hybrid = 0.0 logP_final_hybrid = 0.0 else: ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid = self._ncmc_hybrid(topology_proposal, sampler_state, new_geometry_sampler_state) if logP_work > -np.inf and logP_initial_hybrid > -np.inf and logP_final_hybrid > -np.inf: logP_geometry_reverse = self._geometry_reverse(topology_proposal, ncmc_new_sampler_state, ncmc_old_sampler_state) logP_to_hybrid = logP_initial_hybrid - logP_initial_nonalchemical final_reduced_potential = feptasks.compute_reduced_potential(new_thermodynamic_state, ncmc_new_sampler_state) logP_final_nonalchemical = -final_reduced_potential logP_from_hybrid = logP_final_nonalchemical - logP_final_hybrid logP_sams_weight = new_log_weight - old_log_weight # Compute total log acceptance probability according to Eq. 46 logP_accept = logP_to_hybrid - logP_geometry_forward + logP_work + logP_from_hybrid + logP_geometry_reverse + logP_sams_weight else: logP_geometry_reverse = 0.0 logP_final = 0.0 logP_to_hybrid = 0.0 logP_from_hybrid = 0.0 logP_sams_weight = new_log_weight - old_log_weight logP_accept = logP_to_hybrid - logP_geometry_forward + logP_work + logP_from_hybrid + logP_geometry_reverse + logP_sams_weight #TODO: mark failed proposals as unproposable if self.verbose: print("logP_accept = %+10.4e [logP_to_hybrid = %+10.4e, logP_chemical_proposal = %10.4e, logP_reverse = %+10.4e, -logP_forward = %+10.4e, logP_work = %+10.4e, logP_from_hybrid = %+10.4e, logP_sams_weight = %+10.4e]" % (logP_accept, logP_to_hybrid, logP_chemical_proposal, logP_geometry_reverse, -logP_geometry_forward, logP_work, logP_from_hybrid, logP_sams_weight)) # Write to storage. if self.storage: self.storage.write_quantity('logP_accept', logP_accept, iteration=self.iteration) # Write components to storage self.storage.write_quantity('logP_ncmc_work', logP_work, iteration=self.iteration) self.storage.write_quantity('logP_from_hybrid', logP_from_hybrid, iteration=self.iteration) self.storage.write_quantity('logP_to_hybrid', logP_to_hybrid, iteration=self.iteration) self.storage.write_quantity('logP_chemical_proposal', logP_chemical_proposal, iteration=self.iteration) self.storage.write_quantity('logP_reverse', logP_geometry_reverse, iteration=self.iteration) self.storage.write_quantity('logP_forward', logP_geometry_forward, iteration=self.iteration) self.storage.write_quantity('logP_sams_weight', logP_sams_weight, iteration=self.iteration) # Write some aggregate statistics to storage to make contributions to acceptance probability easier to analyze self.storage.write_quantity('logP_groups_chemical', logP_chemical_proposal, iteration=self.iteration) self.storage.write_quantity('logP_groups_geometry', logP_geometry_reverse - logP_geometry_forward, iteration=self.iteration) return logP_accept, ncmc_new_sampler_state def update_positions(self, n_iterations=1): """ Sample new positions. """ self.sampler.run(n_iterations=n_iterations) def update_state(self): """ Sample the thermodynamic state. """ initial_time = time.time() # Propose new chemical state. if self.verbose: print("Proposing new topology...") [system, positions] = [self.sampler.thermodynamic_state.get_system(remove_thermostat=True), self.sampler.sampler_state.positions] #omm_topology = topology.to_openmm() #convert to OpenMM topology for proposal engine self._omm_topology.setPeriodicBoxVectors(self.sampler.sampler_state.box_vectors) #set the box vectors because in OpenMM topology has these... topology_proposal = self.proposal_engine.propose(system, self._omm_topology) if self.verbose: print("Proposed transformation: %s => %s" % (topology_proposal.old_chemical_state_key, topology_proposal.new_chemical_state_key)) # Determine state keys old_state_key = self.state_key new_state_key = topology_proposal.new_chemical_state_key # Determine log weight old_log_weight = self.get_log_weight(old_state_key) new_log_weight = self.get_log_weight(new_state_key) logp_accept, ncmc_new_sampler_state = self._geometry_ncmc_geometry(topology_proposal, self.sampler.sampler_state, old_log_weight, new_log_weight) # Accept or reject. if np.isnan(logp_accept): accept = False print('logp_accept = NaN') else: accept = ((logp_accept>=0.0) or (np.random.uniform() < np.exp(logp_accept))) if self.accept_everything: print('accept_everything option is turned on; accepting') accept = True if accept: self.sampler.thermodynamic_state.set_system(topology_proposal.new_system, fix_state=True) self.sampler.sampler_state.system = topology_proposal.new_system self.topology = md.Topology.from_openmm(topology_proposal.new_topology) self.sampler.sampler_state = ncmc_new_sampler_state self.sampler.topology = self.topology self.state_key = topology_proposal.new_chemical_state_key self.naccepted += 1 if self.verbose: print(" accepted") else: self.nrejected += 1 if self.verbose: print(" rejected") if self.storage: self.storage.write_configuration('positions', self.sampler.sampler_state.positions, self.topology, iteration=self.iteration) self.storage.write_object('state_key', self.state_key, iteration=self.iteration) self.storage.write_object('proposed_state_key', topology_proposal.new_chemical_state_key, iteration=self.iteration) self.storage.write_quantity('naccepted', self.naccepted, iteration=self.iteration) self.storage.write_quantity('nrejected', self.nrejected, iteration=self.iteration) self.storage.write_quantity('logp_accept', logp_accept, iteration=self.iteration) self.storage.write_quantity('logp_topology_proposal', topology_proposal.logp_proposal, iteration=self.iteration) # Update statistics. self.update_statistics() def update(self): """ Update the sampler with one step of sampling. """ if self.verbose: print("-" * 80) print("Expanded Ensemble sampler iteration %8d" % self.iteration) self.update_positions(n_iterations=self._n_iterations_per_update) self.update_state() self.iteration += 1 if self.verbose: print("-" * 80) if self.pdbfile is not None: print("Writing frame...") from simtk.openmm.app import PDBFile PDBFile.writeModel(self.topology.to_openmm(), self.sampler.sampler_state.positions, self.pdbfile, self.iteration) self.pdbfile.flush() if self.storage: self.storage.sync() def run(self, niterations=1): """ Run the sampler for the specified number of iterations Parameters ---------- niterations : int, optional, default=1 Number of iterations to run the sampler for. """ for iteration in range(niterations): self.update() def update_statistics(self): """ Update sampler statistics. """ if self.state_key not in self.number_of_state_visits: self.number_of_state_visits[self.state_key] = 0 self.number_of_state_visits[self.state_key] += 1
class SAMSSampler(object): """ Self-adjusted mixture sampling engine. Properties ---------- state_keys : set of objects The names of states sampled by the sampler. logZ : dict() of keys : float logZ[key] is the log partition function (up to an additive constant) estimate for chemical state `key` update_method : str Update method. One of ['default'] iteration : int Iterations completed. verbose : bool If True, verbose debug output is printed. References ---------- [1] Tan, Z. (2015) Optimally adjusted mixture sampling and locally weighted histogram analysis, Journal of Computational and Graphical Statistics, to appear. (Supplement) http://www.stat.rutgers.edu/home/ztan/Publication/SAMS_redo4.pdf Examples -------- >>> # Create a test system >>> test = testsystems.AlanineDipeptideVacuum() >>> # Create a SystemGenerator and rebuild the System. >>> from perses.rjmc.topology_proposal import SystemGenerator >>> system_generator = SystemGenerator(['amber99sbildn.xml'], forcefield_kwargs={'implicitSolvent' : None, 'constraints' : None }, nonperiodic_forcefield_kwargs={'nonbondedMethod' : app.NoCutoff}) >>> test.system = system_generator.build_system(test.topology) >>> # Create a sampler state. >>> sampler_state = SamplerState(system=test.system, positions=test.positions) >>> # Create a thermodynamic state. >>> thermodynamic_state = ThermodynamicState(system=test.system, temperature=298.0*unit.kelvin) >>> # Create an MCMC sampler >>> mcmc_sampler = MCMCSampler(thermodynamic_state, sampler_state) >>> # Turn off verbosity >>> mcmc_sampler.verbose = False >>> from perses.rjmc.geometry import FFAllAngleGeometryEngine >>> geometry_engine = FFAllAngleGeometryEngine(metadata={}) >>> # Create an Expanded Ensemble sampler >>> from perses.rjmc.topology_proposal import PointMutationEngine >>> allowed_mutations = [[('2','ALA')],[('2','VAL'),('2','LEU')]] >>> proposal_engine = PointMutationEngine(test.topology, system_generator, max_point_mutants=1, chain_id='1', proposal_metadata=None, allowed_mutations=allowed_mutations) >>> exen_sampler = ExpandedEnsembleSampler(mcmc_sampler, test.topology, 'ACE-ALA-NME', proposal_engine, geometry_engine) >>> # Create a SAMS sampler >>> sams_sampler = SAMSSampler(exen_sampler) >>> # Run the sampler >>> sams_sampler.run() # doctest: +ELLIPSIS ... """ def __init__(self, sampler, logZ=None, log_target_probabilities=None, update_method='two-stage', storage=None, second_stage_start=1000): """ Create a SAMS Sampler. Parameters ---------- sampler : ExpandedEnsembleSampler The expanded ensemble sampler used to sample both configurations and discrete thermodynamic states. logZ : dict of key : float, optional, default=None If specified, the log partition functions for each state will be initialized to the specified dictionary. log_target_probabilities : dict of key : float, optional, default=None If specified, unnormalized target probabilities; default is all 0. update_method : str, optional, default='default' SAMS update algorithm storage : NetCDFStorageView, optional, default=None second_state_start : int, optional, default None At what iteration number to switch to the optimal gain decay """ from scipy.special import logsumexp from perses.utils.openeye import smiles_to_oemol # Keep copies of initializing arguments. # TODO: Make deep copies? self.sampler = sampler self.chemical_states = None self._reference_state = None try: self.chemical_states = self.sampler.proposal_engine.chemical_state_list except NotImplementedError: _logger.warning("The proposal engine has not properly implemented the chemical state property; SAMS will add states on the fly.") if self.chemical_states: # Select a reference state that will always be subtracted (ensure that dict ordering does not change) self._reference_state = self.chemical_states[0] # Initialize the logZ dictionary with scores based on the number of atoms # This is not the negative because the weights are set to the negative of the initial weights self.logZ = {chemical_state: self._num_dof_compensation(chemical_state) for chemical_state in self.chemical_states} #Initialize log target probabilities with log(1/n_states) self.log_target_probabilities = {chemical_state : np.log(len(self.chemical_states)) for chemical_state in self.chemical_states} #If initial weights are specified, override any weight with what is provided #However, if the chemical state is not in the reachable chemical state list,throw an exception if logZ is not None: for (chemical_state, logZ_value) in logZ: if chemical_state not in self.chemical_states: raise ValueError("Provided a logZ initial value for an un-proposable chemical state") self.logZ[chemical_state] = logZ_value if log_target_probabilities is not None: for (chemical_state, log_target_probability) in log_target_probabilities: if chemical_state not in self.chemical_states: raise ValueError("Provided a log target probability for an un-proposable chemical state.") self.log_target_probabilities[chemical_state] = log_target_probability #normalize target probabilities #this is likely not necessary, but it is copying the algorithm in Ref 1 log_sum_target_probabilities = logsumexp((list(self.log_target_probabilities.values()))) self.log_target_probabilities = {chemical_state : log_target_probability - log_sum_target_probabilities for chemical_state, log_target_probability in self.log_target_probabilities} else: self.logZ = dict() self.log_target_probabilities = dict() self.update_method = update_method self.storage = None if storage is not None: self.storage = NetCDFStorageView(storage, modname=self.__class__.__name__) # Initialize. self.iteration = 0 self.verbose = False self.sampler.log_weights = {state_key: - self.logZ[state_key] for state_key in self.logZ.keys()} self.second_stage_start = 0 if second_stage_start is not None: self.second_stage_start = second_stage_start @property def state_keys(self): return self.logZ.keys() def _num_dof_compensation(self, smiles): """ Compute an approximate compensating factor for a chemical state based on the number of degrees of freedom that it has. The formula is: (num_heavy*heavy_factor) + (num_hydrogen*h_factor) where heavy_factor = 4.5 and light_factor = 3.8 Parameters ---------- smiles : str The SMILES string of the molecule Returns ------- correction_factor : float """ mol = smiles_to_oemol(smiles) num_heavy = 0 num_light = 0 heavy_factor = 4.5 light_factor = 3.8 for atom in mol.GetAtoms(): if atom.GetAtomicNum() == 1: num_light += 1 else: num_heavy += 1 correction_factor = num_heavy*heavy_factor + num_light*light_factor return correction_factor def update_sampler(self): """ Update the underlying expanded ensembles sampler. """ self.sampler.update() def update_logZ_estimates(self): """ Update the logZ estimates according to self.update_method. """ state_key = self.sampler.state_key # Add state key to dictionaries if we haven't visited this state before. if state_key not in self.logZ: _logger.warning("A new state key is being added to the logZ; note that this makes the resultant algorithm different from SAMS") self.logZ[state_key] = 0.0 if state_key not in self.log_target_probabilities: _logger.warning("A new state key is being added to the target probabilities; note that this makes the resultant algorithm different from SAMS") self.log_target_probabilities[state_key] = 0.0 # Update estimates of logZ. if self.update_method == 'one-stage': # Based on Eq. 9 of Ref. [1] gamma = 1.0 / float(self.iteration+1) elif self.update_method == 'two-stage': # Keep gamma large until second stage is activated. if self.iteration < self.second_stage_start: # First stage. gamma = 1.0 # TODO: Determine when to switch to second stage else: # Second stage. gamma = 1.0 / float(self.iteration - self.second_stage_start + 1) else: raise Exception("SAMS update method '%s' unknown." % self.update_method) #get the (t-1/2) update from equation 9 in ref 1 self.logZ[state_key] += gamma / np.exp(self.log_target_probabilities[state_key]) if self._reference_state: #the second step of the (t-1/2 update), subtracting the reference state from everything else. #we can only do this for cases where all states have been enumerated self.logZ = {state_key : logZ_estimate - self.logZ[self._reference_state] for state_key, logZ_estimate in self.logZ.items()} # Update log weights for sampler. self.sampler.log_weights = { state_key : - self.logZ[state_key] for state_key in self.logZ.keys()} if self.storage: self.storage.write_object('logZ', self.logZ, iteration=self.iteration) self.storage.write_object('log_weights', self.sampler.log_weights, iteration=self.iteration) def update(self): """ Update the sampler with one step of sampling. """ if self.verbose: print("=" * 80) print("SAMS sampler iteration %5d" % self.iteration) self.update_sampler() self.update_logZ_estimates() if self.storage: self.storage.sync() self.iteration += 1 if self.verbose: print("=" * 80) def run(self, niterations=1): """ Run the sampler for the specified number of iterations Parameters ---------- niterations : int, optional, default=1 Number of iterations to run the sampler for. """ for iteration in range(niterations): self.update()
class ExpandedEnsembleSampler(object): """ Method of expanded ensembles sampling engine. The acceptance criteria is given in the reference document. Roughly, the proposal scheme is: * Draw a proposed chemical state k', and calculate reverse proposal probability * Conditioned on k' and the current positions x, generate new positions with the GeometryEngine * With new positions, jump to a hybrid system at lambda=0 * Anneal from lambda=0 to lambda=1, accumulating work * Jump from the hybrid system at lambda=1 to the k' system, and compute reverse GeometryEngine proposal * Add weight of chemical states k and k' to acceptance probabilities Properties ---------- sampler : MCMCSampler The MCMC sampler used for updating positions. proposal_engine : ProposalEngine The ProposalEngine to use for proposing new sampler states and topologies. system_generator : SystemGenerator The SystemGenerator to use for creating System objects following proposals. state : hashable object The current sampler state. Can be any hashable object. states : set of hashable object All known states. iteration : int Iterations completed. naccepted : int Number of accepted thermodynamic/chemical state changes. nrejected : int Number of rejected thermodynamic/chemical state changes. number_of_state_visits : dict of state_key Cumulative counts of visited states. verbose : bool If True, verbose output is printed. References ---------- [1] Lyubartsev AP, Martsinovski AA, Shevkunov SV, and Vorontsov-Velyaminov PN. New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles. JCP 96:1776, 1992 http://dx.doi.org/10.1063/1.462133 Examples -------- >>> # Create a test system >>> test = testsystems.AlanineDipeptideVacuum() >>> # Create a SystemGenerator and rebuild the System. >>> from perses.rjmc.topology_proposal import SystemGenerator >>> system_generator = SystemGenerator(['amber99sbildn.xml'], forcefield_kwargs={ 'nonbondedMethod' : app.NoCutoff, 'implicitSolvent' : None, 'constraints' : None }) >>> test.system = system_generator.build_system(test.topology) >>> # Create a sampler state. >>> sampler_state = SamplerState(system=test.system, positions=test.positions) >>> # Create a thermodynamic state. >>> thermodynamic_state = ThermodynamicState(system=test.system, temperature=298.0*unit.kelvin) >>> # Create an MCMC sampler >>> mcmc_sampler = MCMCSampler(thermodynamic_state, sampler_state) >>> # Turn off verbosity >>> mcmc_sampler.verbose = False >>> # Create an Expanded Ensemble sampler >>> from perses.rjmc.topology_proposal import PointMutationEngine >>> from perses.rjmc.geometry import FFAllAngleGeometryEngine >>> geometry_engine = FFAllAngleGeometryEngine(metadata={}) >>> allowed_mutations = [[('2','ALA')],[('2','VAL'),('2','LEU')]] >>> proposal_engine = PointMutationEngine(test.topology, system_generator, max_point_mutants=1, chain_id='1', proposal_metadata=None, allowed_mutations=allowed_mutations) >>> exen_sampler = ExpandedEnsembleSampler(mcmc_sampler, test.topology, 'ACE-ALA-NME', proposal_engine, geometry_engine) >>> # Run the sampler >>> exen_sampler.run() """ def __init__(self, sampler, topology, state_key, proposal_engine, geometry_engine, log_weights=None, options=None, platform=None, envname=None, storage=None, ncmc_write_interval=1): """ Create an expanded ensemble sampler. p(x,k) \propto \exp[-u_k(x) + g_k] where g_k is the log weight. Parameters ---------- sampler : MCMCSampler MCMCSampler initialized with current SamplerState topology : simtk.openmm.app.Topology Current topology state : hashable object Current chemical state proposal_engine : ProposalEngine ProposalEngine to use for proposing new chemical states geometry_engine : GeometryEngine GeometryEngine to use for dimension matching log_weights : dict of object : float Log weights to use for expanded ensemble biases. options : dict, optional, default=dict() Options for initializing switching scheme, such as 'timestep', 'nsteps', 'functions' for NCMC platform : simtk.openmm.Platform, optional, default=None Platform to use for NCMC switching. If `None`, default (fastest) platform is used. storage : NetCDFStorageView, optional, default=None If specified, use this storage layer. ncmc_write_interval : int, default 1 How frequently to write out NCMC protocol steps. """ # Keep copies of initializing arguments. # TODO: Make deep copies? self.sampler = sampler self._pressure = sampler.thermodynamic_state.pressure self._temperature = sampler.thermodynamic_state.temperature self.topology = md.Topology.from_openmm(topology) self.state_key = state_key self.proposal_engine = proposal_engine self.log_weights = log_weights if self.log_weights is None: self.log_weights = dict() self.storage = None if storage is not None: self.storage = NetCDFStorageView(storage, modname=self.__class__.__name__) # Initialize self.iteration = 0 option_names = ['timestep', 'nsteps', 'functions', 'nsteps_mcmc', 'splitting'] if options is None: options = dict() for option_name in option_names: if option_name not in options: options[option_name] = None if options['splitting']: self._ncmc_splitting = options['splitting'] else: self._ncmc_splitting = "V R O H R V" if options['nsteps']: self._switching_nsteps = options['nsteps'] self.ncmc_engine = NCMCEngine(temperature=self.sampler.thermodynamic_state.temperature, timestep=options['timestep'], nsteps=options['nsteps'], functions=options['functions'], integrator_splitting=self._ncmc_splitting, platform=platform, storage=self.storage, write_ncmc_interval=ncmc_write_interval) else: self._switching_nsteps = 0 if options['nsteps_mcmc']: self._n_iterations_per_update = options['nsteps_mcmc'] else: self._n_iterations_per_update = 100 self.geometry_engine = geometry_engine self.naccepted = 0 self.nrejected = 0 self.number_of_state_visits = dict() self.verbose = False self.pdbfile = None # if not None, write PDB file self.geometry_pdbfile = None # if not None, write PDB file of geometry proposals self.accept_everything = False # if True, will accept anything that doesn't lead to NaNs self.logPs = list() self.sampler.minimize(max_iterations=40) @property def state_keys(self): return self.log_weights.keys() def get_log_weight(self, state_key): """ Get the log weight of the specified state. Parameters ---------- state_key : hashable object The state key (e.g. chemical state key) to look up. Returns ------- log_weight : float The log weight of the provided state key. Note ---- This adds the key to the self.log_weights dict. """ if state_key not in self.log_weights: self.log_weights[state_key] = 0.0 return self.log_weights[state_key] def _system_to_thermodynamic_state(self, system): """ Given an OpenMM system object, create a corresponding ThermodynamicState that has the same temperature and pressure as the current thermodynamic state. Arguments --------- system : openmm.System The OpenMM system for which to create the thermodynamic state Returns ------- new_thermodynamic_state : openmmtools.states.ThermodynamicState The thermodynamic state object representing the given system """ return ThermodynamicState(system, temperature=self._temperature, pressure=self._pressure) def _geometry_forward(self, topology_proposal, old_sampler_state): """ Run geometry engine to propose new positions and compute logP Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. old_sampler_state : openmmtools.states.SamplerState Configurational properties of the old system atoms. Returns ------- new_sampler_state : openmmtools.states.SamplerState Configurational properties of new atoms proposed by geometry engine calculation. geometry_logp_propose : float The log probability of the forward-only proposal """ if self.verbose: print("Geometry engine proposal...") # Generate coordinates for new atoms and compute probability ratio of old and new probabilities. initial_time = time.time() new_positions, geometry_logp_propose = self.geometry_engine.propose(topology_proposal, old_sampler_state.positions, self.sampler.thermodynamic_state.beta) if self.verbose: print('proposal took %.3f s' % (time.time() - initial_time)) if self.geometry_pdbfile is not None: print("Writing proposed geometry...") from simtk.openmm.app import PDBFile PDBFile.writeFile(topology_proposal.new_topology, new_positions, file=self.geometry_pdbfile) self.geometry_pdbfile.flush() new_sampler_state = SamplerState(new_positions, box_vectors=old_sampler_state.box_vectors) return new_sampler_state, geometry_logp_propose def _geometry_reverse(self, topology_proposal, new_sampler_state, old_sampler_state): """ Run geometry engine reverse calculation to determine logP of proposing the old positions based on the new positions Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. new_sampler_state : openmmtools.states.SamplerState Configurational properties of the new atoms. old_sampler_state : openmmtools.states.SamplerState Configurational properties of the old atoms. Returns ------- geometry_logp_reverse : float The log probability of the proposal for the given transformation """ if self.verbose: print("Geometry engine logP_reverse calculation...") initial_time = time.time() geometry_logp_reverse = self.geometry_engine.logp_reverse(topology_proposal, new_sampler_state.positions, old_sampler_state.positions, self.sampler.thermodynamic_state.beta) if self.verbose: print('calculation took %.3f s' % (time.time() - initial_time)) return geometry_logp_reverse def _ncmc_hybrid(self, topology_proposal, old_sampler_state, new_sampler_state): """ Run a hybrid NCMC protocol from lambda = 0 to lambda = 1 Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. old_sampler_State : openmmtools.states.SamplerState SamplerState of old system at the beginning of NCMCSwitching new_sampler_state : openmmtools.states.SamplerState SamplerState of new system at the beginning of NCMCSwitching Returns ------- old_final_sampler_state : openmmtools.states.SamplerState SamplerState of old system at the end of switching new_final_sampler_state : openmmtools.states.SamplerState SamplerState of new system at the end of switching logP_work : float The NCMC work contribution to the log acceptance probability (Eq. 44) logP_energy : float The contribution of switching to and from the hybrid system to the acceptance probability (Eq. 45) """ if self.verbose: print("Performing NCMC switching") initial_time = time.time() [ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid] = self.ncmc_engine.integrate(topology_proposal, old_sampler_state, new_sampler_state, iteration=self.iteration) if self.verbose: print('NCMC took %.3f s' % (time.time() - initial_time)) # Check that positions are not NaN if new_sampler_state.has_nan(): raise Exception("Positions are NaN after NCMC insert with %d steps" % self._switching_nsteps) return ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid def _geometry_ncmc_geometry(self, topology_proposal, sampler_state, old_log_weight, new_log_weight): """ Use a hybrid NCMC protocol to switch from the old system to new system Will calculate new positions for the new system first, then give both sets of positions to the hybrid NCMC integrator, and finally use the final positions of the old and new systems to calculate the reverse geometry probability Parameters ---------- topology_proposal : TopologyProposal Contains old/new Topology and System objects and atom mappings. sampler_state : openmmtools.states.SamplerState Configurational properties of old atoms at the beginning of the NCMC switching. old_log_weight : float Chemical state weight from SAMSSampler new_log_weight : float Chemical state weight from SAMSSampler Returns ------- logP_accept : float Log of acceptance probability of entire Expanded Ensemble switch (Eq. 25 or 46) ncmc_new_sampler_state : openmmtools.states.SamplerState Configurational properties of new atoms at the end of the NCMC switching. """ if self.verbose: print("Updating chemical state with geometry-ncmc-geometry scheme...") from perses.tests.utils import compute_potential logP_chemical_proposal = topology_proposal.logp_proposal old_thermodynamic_state = self.sampler.thermodynamic_state new_thermodynamic_state = self._system_to_thermodynamic_state(topology_proposal.new_system) initial_reduced_potential = feptasks.compute_reduced_potential(old_thermodynamic_state, sampler_state) logP_initial_nonalchemical = - initial_reduced_potential new_geometry_sampler_state, logP_geometry_forward = self._geometry_forward(topology_proposal, sampler_state) #if we aren't doing any switching, then skip running the NCMC engine at all. if self._switching_nsteps == 0: ncmc_old_sampler_state = sampler_state ncmc_new_sampler_state = new_geometry_sampler_state logP_work = 0.0 logP_initial_hybrid = 0.0 logP_final_hybrid = 0.0 else: ncmc_old_sampler_state, ncmc_new_sampler_state, logP_work, logP_initial_hybrid, logP_final_hybrid = self._ncmc_hybrid(topology_proposal, sampler_state, new_geometry_sampler_state) if logP_work > -np.inf and logP_initial_hybrid > -np.inf and logP_final_hybrid > -np.inf: logP_geometry_reverse = self._geometry_reverse(topology_proposal, ncmc_new_sampler_state, ncmc_old_sampler_state) logP_to_hybrid = logP_initial_hybrid - logP_initial_nonalchemical final_reduced_potential = feptasks.compute_reduced_potential(new_thermodynamic_state, ncmc_new_sampler_state) logP_final_nonalchemical = -final_reduced_potential logP_from_hybrid = logP_final_nonalchemical - logP_final_hybrid logP_sams_weight = new_log_weight - old_log_weight # Compute total log acceptance probability according to Eq. 46 logP_accept = logP_to_hybrid - logP_geometry_forward + logP_work + logP_from_hybrid + logP_geometry_reverse + logP_sams_weight else: logP_geometry_reverse = 0.0 logP_final = 0.0 logP_to_hybrid = 0.0 logP_from_hybrid = 0.0 logP_sams_weight = new_log_weight - old_log_weight logP_accept = logP_to_hybrid - logP_geometry_forward + logP_work + logP_from_hybrid + logP_geometry_reverse + logP_sams_weight #TODO: mark failed proposals as unproposable if self.verbose: print("logP_accept = %+10.4e [logP_to_hybrid = %+10.4e, logP_chemical_proposal = %10.4e, logP_reverse = %+10.4e, -logP_forward = %+10.4e, logP_work = %+10.4e, logP_from_hybrid = %+10.4e, logP_sams_weight = %+10.4e]" % (logP_accept, logP_to_hybrid, logP_chemical_proposal, logP_geometry_reverse, -logP_geometry_forward, logP_work, logP_from_hybrid, logP_sams_weight)) # Write to storage. if self.storage: self.storage.write_quantity('logP_accept', logP_accept, iteration=self.iteration) # Write components to storage self.storage.write_quantity('logP_ncmc_work', logP_work, iteration=self.iteration) self.storage.write_quantity('logP_from_hybrid', logP_from_hybrid, iteration=self.iteration) self.storage.write_quantity('logP_to_hybrid', logP_to_hybrid, iteration=self.iteration) self.storage.write_quantity('logP_chemical_proposal', logP_chemical_proposal, iteration=self.iteration) self.storage.write_quantity('logP_reverse', logP_geometry_reverse, iteration=self.iteration) self.storage.write_quantity('logP_forward', logP_geometry_forward, iteration=self.iteration) self.storage.write_quantity('logP_sams_weight', logP_sams_weight, iteration=self.iteration) # Write some aggregate statistics to storage to make contributions to acceptance probability easier to analyze self.storage.write_quantity('logP_groups_chemical', logP_chemical_proposal, iteration=self.iteration) self.storage.write_quantity('logP_groups_geometry', logP_geometry_reverse - logP_geometry_forward, iteration=self.iteration) return logP_accept, ncmc_new_sampler_state def update_positions(self, n_iterations=1): """ Sample new positions. """ self.sampler.run(n_iterations=n_iterations) def update_state(self): """ Sample the thermodynamic state. """ initial_time = time.time() # Propose new chemical state. if self.verbose: print("Proposing new topology...") [system, topology, positions] = [self.sampler.thermodynamic_state.get_system(remove_thermostat=True), self.topology, self.sampler.sampler_state.positions] omm_topology = topology.to_openmm() #convert to OpenMM topology for proposal engine omm_topology.setPeriodicBoxVectors(self.sampler.sampler_state.box_vectors) #set the box vectors because in OpenMM topology has these... topology_proposal = self.proposal_engine.propose(system, omm_topology) if self.verbose: print("Proposed transformation: %s => %s" % (topology_proposal.old_chemical_state_key, topology_proposal.new_chemical_state_key)) # Determine state keys old_state_key = self.state_key new_state_key = topology_proposal.new_chemical_state_key # Determine log weight old_log_weight = self.get_log_weight(old_state_key) new_log_weight = self.get_log_weight(new_state_key) logp_accept, ncmc_new_sampler_state = self._geometry_ncmc_geometry(topology_proposal, self.sampler.sampler_state, old_log_weight, new_log_weight) # Accept or reject. if np.isnan(logp_accept): accept = False print('logp_accept = NaN') else: accept = ((logp_accept>=0.0) or (np.random.uniform() < np.exp(logp_accept))) if self.accept_everything: print('accept_everything option is turned on; accepting') accept = True if accept: self.sampler.thermodynamic_state.set_system(topology_proposal.new_system, fix_state=True) self.sampler.sampler_state.system = topology_proposal.new_system self.topology = md.Topology.from_openmm(topology_proposal.new_topology) self.sampler.sampler_state = ncmc_new_sampler_state self.sampler.topology = self.topology self.state_key = topology_proposal.new_chemical_state_key self.naccepted += 1 if self.verbose: print(" accepted") else: self.nrejected += 1 if self.verbose: print(" rejected") if self.storage: self.storage.write_configuration('positions', self.sampler.sampler_state.positions, self.topology, iteration=self.iteration) self.storage.write_object('state_key', self.state_key, iteration=self.iteration) self.storage.write_object('proposed_state_key', topology_proposal.new_chemical_state_key, iteration=self.iteration) self.storage.write_quantity('naccepted', self.naccepted, iteration=self.iteration) self.storage.write_quantity('nrejected', self.nrejected, iteration=self.iteration) self.storage.write_quantity('logp_accept', logp_accept, iteration=self.iteration) self.storage.write_quantity('logp_topology_proposal', topology_proposal.logp_proposal, iteration=self.iteration) # Update statistics. self.update_statistics() def update(self): """ Update the sampler with one step of sampling. """ if self.verbose: print("-" * 80) print("Expanded Ensemble sampler iteration %8d" % self.iteration) self.update_positions(n_iterations=self._n_iterations_per_update) self.update_state() self.iteration += 1 if self.verbose: print("-" * 80) if self.pdbfile is not None: print("Writing frame...") from simtk.openmm.app import PDBFile PDBFile.writeModel(self.topology.to_openmm(), self.sampler.sampler_state.positions, self.pdbfile, self.iteration) self.pdbfile.flush() if self.storage: self.storage.sync() def run(self, niterations=1): """ Run the sampler for the specified number of iterations Parameters ---------- niterations : int, optional, default=1 Number of iterations to run the sampler for. """ for iteration in range(niterations): self.update() def update_statistics(self): """ Update sampler statistics. """ if self.state_key not in self.number_of_state_visits: self.number_of_state_visits[self.state_key] = 0 self.number_of_state_visits[self.state_key] += 1
class SAMSSampler(object): """ Self-adjusted mixture sampling engine. Properties ---------- state_keys : set of objects The names of states sampled by the sampler. logZ : dict() of keys : float logZ[key] is the log partition function (up to an additive constant) estimate for chemical state `key` update_method : str Update method. One of ['default'] iteration : int Iterations completed. verbose : bool If True, verbose debug output is printed. References ---------- [1] Tan, Z. (2015) Optimally adjusted mixture sampling and locally weighted histogram analysis, Journal of Computational and Graphical Statistics, to appear. (Supplement) http://www.stat.rutgers.edu/home/ztan/Publication/SAMS_redo4.pdf Examples -------- >>> # Create a test system >>> test = testsystems.AlanineDipeptideVacuum() >>> # Create a SystemGenerator and rebuild the System. >>> from perses.rjmc.topology_proposal import SystemGenerator >>> system_generator = SystemGenerator(['amber99sbildn.xml'], forcefield_kwargs={ 'nonbondedMethod' : app.NoCutoff, 'implicitSolvent' : None, 'constraints' : None }) >>> test.system = system_generator.build_system(test.topology) >>> # Create a sampler state. >>> sampler_state = SamplerState(system=test.system, positions=test.positions) >>> # Create a thermodynamic state. >>> thermodynamic_state = ThermodynamicState(system=test.system, temperature=298.0*unit.kelvin) >>> # Create an MCMC sampler >>> mcmc_sampler = MCMCSampler(thermodynamic_state, sampler_state) >>> # Turn off verbosity >>> mcmc_sampler.verbose = False >>> from perses.rjmc.geometry import FFAllAngleGeometryEngine >>> geometry_engine = FFAllAngleGeometryEngine(metadata={}) >>> # Create an Expanded Ensemble sampler >>> from perses.rjmc.topology_proposal import PointMutationEngine >>> allowed_mutations = [[('2','ALA')],[('2','VAL'),('2','LEU')]] >>> proposal_engine = PointMutationEngine(test.topology, system_generator, max_point_mutants=1, chain_id='1', proposal_metadata=None, allowed_mutations=allowed_mutations) >>> exen_sampler = ExpandedEnsembleSampler(mcmc_sampler, test.topology, 'ACE-ALA-NME', proposal_engine, geometry_engine) >>> # Create a SAMS sampler >>> sams_sampler = SAMSSampler(exen_sampler) >>> # Run the sampler >>> sams_sampler.run() # doctest: +ELLIPSIS ... """ def __init__(self, sampler, logZ=None, log_target_probabilities=None, update_method='two-stage', storage=None, second_stage_start=1000): """ Create a SAMS Sampler. Parameters ---------- sampler : ExpandedEnsembleSampler The expanded ensemble sampler used to sample both configurations and discrete thermodynamic states. logZ : dict of key : float, optional, default=None If specified, the log partition functions for each state will be initialized to the specified dictionary. log_target_probabilities : dict of key : float, optional, default=None If specified, unnormalized target probabilities; default is all 0. update_method : str, optional, default='default' SAMS update algorithm storage : NetCDFStorageView, optional, default=None second_state_start : int, optional, default None At what iteration number to switch to the optimal gain decay """ from scipy.misc import logsumexp from perses.tests.utils import createOEMolFromSMILES # Keep copies of initializing arguments. # TODO: Make deep copies? self.sampler = sampler self.chemical_states = None self._reference_state = None try: self.chemical_states = self.sampler.proposal_engine.chemical_state_list except NotImplementedError: logger.warn("The proposal engine has not properly implemented the chemical state property; SAMS will add states on the fly.") if self.chemical_states: # Select a reference state that will always be subtracted (ensure that dict ordering does not change) self._reference_state = self.chemical_states[0] # Initialize the logZ dictionary with scores based on the number of atoms # This is not the negative because the weights are set to the negative of the initial weights self.logZ = {chemical_state: self._num_dof_compensation(chemical_state) for chemical_state in self.chemical_states} #Initialize log target probabilities with log(1/n_states) self.log_target_probabilities = {chemical_state : np.log(len(self.chemical_states)) for chemical_state in self.chemical_states} #If initial weights are specified, override any weight with what is provided #However, if the chemical state is not in the reachable chemical state list,throw an exception if logZ is not None: for (chemical_state, logZ_value) in logZ: if chemical_state not in self.chemical_states: raise ValueError("Provided a logZ initial value for an un-proposable chemical state") self.logZ[chemical_state] = logZ_value if log_target_probabilities is not None: for (chemical_state, log_target_probability) in log_target_probabilities: if chemical_state not in self.chemical_states: raise ValueError("Provided a log target probability for an un-proposable chemical state.") self.log_target_probabilities[chemical_state] = log_target_probability #normalize target probabilities #this is likely not necessary, but it is copying the algorithm in Ref 1 log_sum_target_probabilities = logsumexp((list(self.log_target_probabilities.values()))) self.log_target_probabilities = {chemical_state : log_target_probability - log_sum_target_probabilities for chemical_state, log_target_probability in self.log_target_probabilities} else: self.logZ = dict() self.log_target_probabilities = dict() self.update_method = update_method self.storage = None if storage is not None: self.storage = NetCDFStorageView(storage, modname=self.__class__.__name__) # Initialize. self.iteration = 0 self.verbose = False self.sampler.log_weights = {state_key: - self.logZ[state_key] for state_key in self.logZ.keys()} self.second_stage_start = 0 if second_stage_start is not None: self.second_stage_start = second_stage_start @property def state_keys(self): return self.logZ.keys() def _num_dof_compensation(self, smiles): """ Compute an approximate compensating factor for a chemical state based on the number of degrees of freedom that it has. The formula is: (num_heavy*heavy_factor) + (num_hydrogen*h_factor) where heavy_factor = 4.5 and light_factor = 3.8 Parameters ---------- smiles : str The SMILES string of the molecule Returns ------- correction_factor : float """ mol = createOEMolFromSMILES(smiles) num_heavy = 0 num_light = 0 heavy_factor = 4.5 light_factor = 3.8 for atom in mol.GetAtoms(): if atom.GetAtomicNum() == 1: num_light += 1 else: num_heavy += 1 correction_factor = num_heavy*heavy_factor + num_light*light_factor return correction_factor def update_sampler(self): """ Update the underlying expanded ensembles sampler. """ self.sampler.update() def update_logZ_estimates(self): """ Update the logZ estimates according to self.update_method. """ state_key = self.sampler.state_key # Add state key to dictionaries if we haven't visited this state before. if state_key not in self.logZ: logger.warn("A new state key is being added to the logZ; note that this makes the resultant algorithm different from SAMS") self.logZ[state_key] = 0.0 if state_key not in self.log_target_probabilities: logger.warn("A new state key is being added to the target probabilities; note that this makes the resultant algorithm different from SAMS") self.log_target_probabilities[state_key] = 0.0 # Update estimates of logZ. if self.update_method == 'one-stage': # Based on Eq. 9 of Ref. [1] gamma = 1.0 / float(self.iteration+1) elif self.update_method == 'two-stage': # Keep gamma large until second stage is activated. if self.iteration < self.second_stage_start: # First stage. gamma = 1.0 # TODO: Determine when to switch to second stage else: # Second stage. gamma = 1.0 / float(self.iteration - self.second_stage_start + 1) else: raise Exception("SAMS update method '%s' unknown." % self.update_method) #get the (t-1/2) update from equation 9 in ref 1 self.logZ[state_key] += gamma / np.exp(self.log_target_probabilities[state_key]) if self._reference_state: #the second step of the (t-1/2 update), subtracting the reference state from everything else. #we can only do this for cases where all states have been enumerated self.logZ = {state_key : logZ_estimate - self.logZ[self._reference_state] for state_key, logZ_estimate in self.logZ.items()} # Update log weights for sampler. self.sampler.log_weights = { state_key : - self.logZ[state_key] for state_key in self.logZ.keys()} if self.storage: self.storage.write_object('logZ', self.logZ, iteration=self.iteration) self.storage.write_object('log_weights', self.sampler.log_weights, iteration=self.iteration) def update(self): """ Update the sampler with one step of sampling. """ if self.verbose: print("=" * 80) print("SAMS sampler iteration %5d" % self.iteration) self.update_sampler() self.update_logZ_estimates() if self.storage: self.storage.sync() self.iteration += 1 if self.verbose: print("=" * 80) def run(self, niterations=1): """ Run the sampler for the specified number of iterations Parameters ---------- niterations : int, optional, default=1 Number of iterations to run the sampler for. """ for iteration in range(niterations): self.update()