def load_featured_data(self): # Check if the file for csv self.labeled_xy = pd.read_csv(personalLibrary.find_data_filename(PipelineManager.FULL_TRAIN_DATA_PATH)) self.x_test = pd.read_csv(personalLibrary.find_data_filename(PipelineManager.FULL_TEST_DATA_PATH)) self.num_features = self.labeled_xy.shape[1] - 1 self.num_examples = self.labeled_xy.shape[0] self.split_train_csv()
def load_featured_data(self): # Check if the file for csv self.labeled_xy = pd.read_csv( personalLibrary.find_data_filename( PipelineManager.FULL_TRAIN_DATA_PATH)) self.x_test = pd.read_csv( personalLibrary.find_data_filename( PipelineManager.FULL_TEST_DATA_PATH)) self.num_features = self.labeled_xy.shape[1] - 1 self.num_examples = self.labeled_xy.shape[0] self.split_train_csv()
def write_submission(self): self.compile_report() self.sample_submission = pd.read_csv(personalLibrary.find_data_filename(PipelineManager.FULL_SAMPLE_SUBMISSION_PATH)) # Then see how many headers it has columns = self.sample_submission.columns.values.tolist() pd.DataFrame({columns[self.pred_index]: self.y_test}).to_csv(self.get_submission_path(), index=False, header=self.header) self.FULL_SUBMISSION_PATH = self.get_submission_path()
def write_submission(self): self.sample_submission = pd.read_csv( personalLibrary.find_data_filename( PipelineManager.FULL_SAMPLE_SUBMISSION_PATH)) # Then see how many headers it has columns = self.sample_submission.columns.values.tolist() pd.DataFrame({ columns[0]: self.y_test }).to_csv(self.get_submission_path(), index=False, header=self.header) self.FULL_SUBMISSION_PATH = self.get_submission_path()