예제 #1
0
def boxlist_box_voting(top_boxlist,
                       all_boxlist,
                       thresh,
                       scoring_method='ID',
                       beta=1.0,
                       score_field="scores"):
    if thresh <= 0:
        return top_boxlist
    mode = top_boxlist.mode
    top_boxes = top_boxlist.convert("xyxy").bbox.cpu()
    all_boxes = all_boxlist.convert("xyxy").bbox.cpu()
    top_score = top_boxlist.get_field(score_field).cpu()
    all_score = all_boxlist.get_field(score_field).cpu()
    top_dets = np.hstack((top_boxes, top_score[:,
                                               np.newaxis])).astype(np.float32,
                                                                    copy=False)
    all_dets = np.hstack((all_boxes, all_score[:,
                                               np.newaxis])).astype(np.float32,
                                                                    copy=False)
    dets = box_utils.box_voting(top_dets, all_dets, thresh, scoring_method,
                                beta)
    boxlist = BoxList(torch.from_numpy(dets[:, :4]).cuda(),
                      all_boxlist.size,
                      mode="xyxy")
    boxlist.add_field("scores", torch.from_numpy(dets[:, -1]).cuda())
    return boxlist.convert(mode)
예제 #2
0
def cat_boxlist(bboxes):
    """
    Concatenates a list of BoxList (having the same image size) into a
    single BoxList

    Arguments:
        bboxes (list[BoxList])
    """
    assert isinstance(bboxes, (list, tuple))
    assert all(isinstance(bbox, BoxList) for bbox in bboxes)

    size = bboxes[0].size
    assert all(bbox.size == size for bbox in bboxes)

    mode = bboxes[0].mode
    assert all(bbox.mode == mode for bbox in bboxes)

    fields = set(bboxes[0].fields())
    assert all(set(bbox.fields()) == fields for bbox in bboxes)

    cat_boxes = BoxList(_cat([bbox.bbox for bbox in bboxes], dim=0), size,
                        mode)

    for field in fields:
        data = _cat([bbox.get_field(field) for bbox in bboxes], dim=0)
        cat_boxes.add_field(field, data)

    return cat_boxes
예제 #3
0
def boxlist_soft_nms(boxlist,
                     sigma=0.5,
                     overlap_thresh=0.3,
                     score_thresh=0.001,
                     method='linear',
                     score_field="scores"):
    """
    Performs non-maximum suppression on a boxlist, with scores specified
    in a boxlist field via score_field.

    Arguments:
        boxlist(BoxList)
        nms_thresh (float)
        max_proposals (int): if > 0, then only the top max_proposals are kept
            after non-maximum suppression
        score_field (str)
    """
    if overlap_thresh <= 0:
        return boxlist
    mode = boxlist.mode
    boxlist = boxlist.convert("xyxy")
    boxes = boxlist.bbox.cpu()
    score = boxlist.get_field(score_field).cpu()
    dets = np.hstack((boxes, score[:, np.newaxis])).astype(np.float32,
                                                           copy=False)
    dets, _ = box_utils.soft_nms(dets, sigma, overlap_thresh, score_thresh,
                                 method)
    boxlist = BoxList(torch.from_numpy(dets[:, :4]).cuda(),
                      boxlist.size,
                      mode="xyxy")
    boxlist.add_field("scores", torch.from_numpy(dets[:, -1]).cuda())
    return boxlist.convert(mode)
예제 #4
0
def boxlist_soft_nms(boxlist,
                     sigma=0.5,
                     overlap_thresh=0.3,
                     score_thresh=0.001,
                     method='linear',
                     score_field="scores"):
    """
    Performs non-maximum suppression on a boxlist, with scores specified
    in a boxlist field via score_field.

    Arguments:
        boxlist(BoxList)
        nms_thresh (float)
        max_proposals (int): if > 0, then only the top max_proposals are kept
            after non-maximum suppression
        score_field (str)
    """
    if overlap_thresh <= 0:
        return boxlist
    mode = boxlist.mode
    boxlist = boxlist.convert("xyxy")
    boxes = boxlist.bbox.cpu()
    score = boxlist.get_field(score_field).cpu()
    dets, scores, _ = _box_soft_nms(boxes, score, sigma, overlap_thresh,
                                    score_thresh, method)
    boxlist = BoxList(dets.cuda(), boxlist.size, mode="xyxy")
    boxlist.add_field("scores", scores.cuda())
    return boxlist.convert(mode)
예제 #5
0
    def forward_for_single_feature_map(self, anchors, objectness,
                                       box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1)
        objectness = objectness.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                               dim=1,
                                               sorted=True)

        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]

        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        proposals = self.box_coder.decode(box_regression.view(-1, 4),
                                          concat_anchors.view(-1, 4))

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness,
                                             image_shapes):
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result
예제 #6
0
def boxlist_box_voting(top_boxlist,
                       all_boxlist,
                       thresh,
                       scoring_method='ID',
                       beta=1.0,
                       score_field="scores"):
    if thresh <= 0:
        return top_boxlist
    mode = top_boxlist.mode
    top_boxes = top_boxlist.convert("xyxy").bbox
    all_boxes = all_boxlist.convert("xyxy").bbox
    top_score = top_boxlist.get_field(score_field)
    all_score = all_boxlist.get_field(score_field)
    boxes, scores = _box_voting(top_boxes, top_score, all_boxes, all_score,
                                thresh, scoring_method, beta)
    boxlist = BoxList(boxes, all_boxlist.size, mode="xyxy")
    boxlist.add_field("scores", scores)
    return boxlist.convert(mode)
예제 #7
0
 def prepare_boxlist(self, boxes, scores, image_shape):
     """
     Returns BoxList from `boxes` and adds probability scores information
     as an extra field
     `boxes` has shape (#detections, 4 * #classes), where each row represents
     a list of predicted bounding boxes for each of the object classes in the
     dataset (including the background class). The detections in each row
     originate from the same object proposal.
     `scores` has shape (#detection, #classes), where each row represents a list
     of object detection confidence scores for each of the object classes in the
     dataset (including the background class). `scores[i, j]`` corresponds to the
     box at `boxes[i, j * 4:(j + 1) * 4]`.
     """
     boxes = boxes.reshape(-1, 4)
     scores = scores.reshape(-1)
     boxlist = BoxList(boxes, image_shape, mode="xyxy")
     boxlist.add_field("scores", scores)
     return boxlist
예제 #8
0
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > self.score_thresh
        for j in range(1, num_classes):
            inds = inds_all[:, j].nonzero().squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class_old = boxlist_for_class
            if cfg.TEST.SOFT_NMS.ENABLED:
                boxlist_for_class = boxlist_soft_nms(
                    boxlist_for_class,
                    sigma=cfg.TEST.SOFT_NMS.SIGMA,
                    overlap_thresh=self.nms,
                    score_thresh=0.0001,
                    method=cfg.TEST.SOFT_NMS.METHOD
                )
            else:
                boxlist_for_class = boxlist_nms(
                    boxlist_for_class, self.nms
                )
            # Refine the post-NMS boxes using bounding-box voting
            if cfg.TEST.BBOX_VOTE.ENABLED and boxes_j.shape[0] > 0:
                boxlist_for_class = boxlist_box_voting(
                    boxlist_for_class,
                    boxlist_for_class_old,
                    cfg.TEST.BBOX_VOTE.VOTE_TH,
                    scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD
                )
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device)
            )
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(), number_of_detections - self.detections_per_img + 1
            )
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        return result
예제 #9
0
    def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        if 'iscrowd' in anno[0]:
            anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        target = target.clip_to_image(remove_empty=True)

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        return img, target, idx
예제 #10
0
 def forward(self, image_list, feature_maps):
     grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
     anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
     anchors = []
     for i, (image_height,
             image_width) in enumerate(image_list.image_sizes):
         anchors_in_image = []
         for anchors_per_feature_map in anchors_over_all_feature_maps:
             boxlist = BoxList(anchors_per_feature_map,
                               (image_width, image_height),
                               mode="xyxy")
             self.add_visibility_to(boxlist)
             anchors_in_image.append(boxlist)
         anchors.append(anchors_in_image)
     return anchors
예제 #11
0
    def parse_anns(self, image_size, anns):
        boxes = [ann['bbox'] for ann in anns]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        bbox = BoxList(boxes, image_size, mode="xywh").convert("xyxy")

        classes = [ann['category_id'] for ann in anns]
        classes = torch.tensor(classes)
        bbox.add_field("labels", classes)

        masks = [ann['segmentation'] for ann in anns]
        masks = Mask(masks, image_size, mode='poly')
        bbox.add_field("masks", masks)

        parsing = [ann['parsing'] for ann in anns]
        parsing = ParsingPoly(parsing, image_size)
        bbox.add_field("parsing", parsing)
        return bbox
예제 #12
0
def evaluate_box_proposals(predictions,
                           dataset,
                           thresholds=None,
                           area="all",
                           limit=None):
    """Evaluate detection proposal recall metrics. This function is a much
    faster alternative to the official COCO API recall evaluation code. However,
    it produces slightly different results.
    """
    # Record max overlap value for each gt box
    # Return vector of overlap values
    areas = {
        "all": 0,
        "small": 1,
        "medium": 2,
        "large": 3,
        "96-128": 4,
        "128-256": 5,
        "256-512": 6,
        "512-inf": 7,
    }
    area_ranges = [
        [0**2, 1e5**2],  # all
        [0**2, 32**2],  # small
        [32**2, 96**2],  # medium
        [96**2, 1e5**2],  # large
        [96**2, 128**2],  # 96-128
        [128**2, 256**2],  # 128-256
        [256**2, 512**2],  # 256-512
        [512**2, 1e5**2],
    ]  # 512-inf
    assert area in areas, "Unknown area range: {}".format(area)
    area_range = area_ranges[areas[area]]
    gt_overlaps = []
    num_pos = 0

    for image_id, prediction in enumerate(predictions):
        original_id = dataset.id_to_img_map[image_id]

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))

        # sort predictions in descending order
        # TODO maybe remove this and make it explicit in the documentation
        inds = prediction.get_field("objectness").sort(descending=True)[1]
        prediction = prediction[inds]

        ann_ids = dataset.coco.getAnnIds(imgIds=original_id)
        anno = dataset.coco.loadAnns(ann_ids)
        gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0]
        gt_boxes = torch.as_tensor(gt_boxes).reshape(
            -1, 4)  # guard against no boxes
        gt_boxes = BoxList(gt_boxes, (image_width, image_height),
                           mode="xywh").convert("xyxy")
        gt_areas = torch.as_tensor(
            [obj["area"] for obj in anno if obj["iscrowd"] == 0])

        if len(gt_boxes) == 0:
            continue

        valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <=
                                                       area_range[1])
        gt_boxes = gt_boxes[valid_gt_inds]

        num_pos += len(gt_boxes)

        if len(gt_boxes) == 0:
            continue

        if len(prediction) == 0:
            continue

        if limit is not None and len(prediction) > limit:
            prediction = prediction[:limit]

        overlaps = boxlist_iou(prediction, gt_boxes)

        _gt_overlaps = torch.zeros(len(gt_boxes))
        for j in range(min(len(prediction), len(gt_boxes))):
            # find which proposal box maximally covers each gt box
            # and get the iou amount of coverage for each gt box
            max_overlaps, argmax_overlaps = overlaps.max(dim=0)

            # find which gt box is 'best' covered (i.e. 'best' = most iou)
            gt_ovr, gt_ind = max_overlaps.max(dim=0)
            assert gt_ovr >= 0
            # find the proposal box that covers the best covered gt box
            box_ind = argmax_overlaps[gt_ind]
            # record the iou coverage of this gt box
            _gt_overlaps[j] = overlaps[box_ind, gt_ind]
            assert _gt_overlaps[j] == gt_ovr
            # mark the proposal box and the gt box as used
            overlaps[box_ind, :] = -1
            overlaps[:, gt_ind] = -1

        # append recorded iou coverage level
        gt_overlaps.append(_gt_overlaps)
    gt_overlaps = torch.cat(gt_overlaps, dim=0)
    gt_overlaps, _ = torch.sort(gt_overlaps)

    if thresholds is None:
        step = 0.05
        thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
    recalls = torch.zeros_like(thresholds)
    # compute recall for each iou threshold
    for i, t in enumerate(thresholds):
        recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
    # ar = 2 * np.trapz(recalls, thresholds)
    ar = recalls.mean()
    return {
        "ar": ar,
        "recalls": recalls,
        "thresholds": thresholds,
        "gt_overlaps": gt_overlaps,
        "num_pos": num_pos,
    }
예제 #13
0
    def forward(self, box_cls_all, box_reg_all, centerness_all, boxes_all):
        device = box_cls_all.device
        boxes_per_image = [len(box) for box in boxes_all]
        cls = box_cls_all.split(boxes_per_image, dim=0)
        reg = box_reg_all.split(boxes_per_image, dim=0)
        center = centerness_all.split(boxes_per_image, dim=0)

        results = []
        for box_cls, box_regression, centerness, boxes in zip(cls, reg, center, boxes_all):
            N, C, H, W = box_cls.shape
            # put in the same format as locations
            box_cls = box_cls.permute(0, 2, 3, 1).reshape(N, -1, self.num_classes).sigmoid()
            box_regression = box_regression.permute(0, 2, 3, 1).reshape(N, -1, 4)
            centerness = centerness.permute(0, 2, 3, 1).reshape(N, -1).sigmoid()

            # multiply the classification scores with centerness scores
            box_cls = box_cls * centerness[:, :, None]
            _boxes = boxes.bbox
            size = boxes.size
            boxes_scores = boxes.get_field("scores")
            results_per_image = [boxes]
            for i in range(N):
                box = _boxes[i]
                boxes_score = boxes_scores[i]
                per_box_cls = box_cls[i]
                per_box_cls_max, per_box_cls_inds = per_box_cls.max(dim=0)

                per_class = torch.range(2, 1 + self.num_classes, dtype=torch.long, device=device)

                per_box_regression = box_regression[i]
                per_box_regression = per_box_regression[per_box_cls_inds]

                x_step = 1.0
                y_step = 1.0
                shifts_x = torch.arange(
                    0, self.m, step=x_step,
                    dtype=torch.float32, device=device
                ) + x_step / 2
                shifts_y = torch.arange(
                    0, self.m, step=y_step,
                    dtype=torch.float32, device=device
                ) + y_step / 2
                shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
                shift_x = shift_x.reshape(-1)
                shift_y = shift_y.reshape(-1)
                locations = torch.stack((shift_x, shift_y), dim=1)
                per_locations = locations[per_box_cls_inds]

                _x1 = per_locations[:, 0] - per_box_regression[:, 0]
                _y1 = per_locations[:, 1] - per_box_regression[:, 1]
                _x2 = per_locations[:, 0] + per_box_regression[:, 2]
                _y2 = per_locations[:, 1] + per_box_regression[:, 3]

                _x1 = _x1 / self.m * (box[2] - box[0]) + box[0]
                _y1 = _y1 / self.m * (box[3] - box[1]) + box[1]
                _x2 = _x2 / self.m * (box[2] - box[0]) + box[0]
                _y2 = _y2 / self.m * (box[3] - box[1]) + box[1]

                detections = torch.stack([_x1, _y1, _x2, _y2], dim=-1)

                boxlist = BoxList(detections, size, mode="xyxy")
                boxlist.add_field("labels", per_class)
                boxlist.add_field("scores", torch.sqrt(torch.sqrt(per_box_cls_max) * boxes_score))
                boxlist = boxlist.clip_to_image(remove_empty=False)
                boxlist = remove_small_boxes(boxlist, 0)
                results_per_image.append(boxlist)

            results_per_image = cat_boxlist(results_per_image)
            results.append(results_per_image)

        return results
예제 #14
0
파일: test.py 프로젝트: zhubinQAQ/CPM-R-CNN
def filter_results(boxlist):
    num_classes = cfg.MODEL.NUM_CLASSES
    if not cfg.TEST.SOFT_NMS.ENABLED and not cfg.TEST.BBOX_VOTE.ENABLED:
        # multiclass nms
        scores = boxlist.get_field("scores")
        device = scores.device
        num_repeat = int(boxlist.bbox.shape[0] / num_classes)
        labels = np.tile(np.arange(num_classes), num_repeat)
        boxlist.add_field(
            "labels",
            torch.from_numpy(labels).to(dtype=torch.int64, device=device))
        fg_labels = torch.from_numpy(
            (np.arange(boxlist.bbox.shape[0]) % num_classes !=
             0).astype(int)).to(dtype=torch.bool, device=device)
        _scores = scores > cfg.FAST_RCNN.SCORE_THRESH
        inds_all = _scores & fg_labels
        result = boxlist_ml_nms(boxlist[inds_all], cfg.FAST_RCNN.NMS)
    else:
        # boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        boxes = boxlist.bbox.reshape(-1, 4)
        labels = boxlist.get_field('labels')
        scores = boxlist.get_field("scores")
        # scores = boxlist.get_field("scores").reshape(-1, num_classes)
        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > cfg.FAST_RCNN.SCORE_THRESH
        for j in range(1, num_classes):
            # inds = inds_all[:, j].nonzero().squeeze(1)
            class_inds = labels == j
            inds = (inds_all + class_inds == 2)
            scores_j = scores[inds]
            boxes_j = boxes[inds]
            # scores_j = scores[inds, j]
            # boxes_j = boxes[inds, j * 4 : (j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class_old = boxlist_for_class
            if cfg.TEST.SOFT_NMS.ENABLED:
                boxlist_for_class = boxlist_soft_nms(
                    boxlist_for_class,
                    sigma=cfg.TEST.SOFT_NMS.SIGMA,
                    overlap_thresh=cfg.FAST_RCNN.NMS,
                    score_thresh=0.0001,
                    method=cfg.TEST.SOFT_NMS.METHOD)
            else:
                boxlist_for_class = boxlist_nms(boxlist_for_class,
                                                cfg.FAST_RCNN.NMS)
            # Refine the post-NMS boxes using bounding-box voting
            if cfg.TEST.BBOX_VOTE.ENABLED and boxes_j.shape[0] > 0:
                boxlist_for_class = boxlist_box_voting(
                    boxlist_for_class,
                    boxlist_for_class_old,
                    cfg.TEST.BBOX_VOTE.VOTE_TH,
                    scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD)
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels",
                torch.full((num_labels, ), j, dtype=torch.int64,
                           device=device))
            result.append(boxlist_for_class)

        result = cat_boxlist(result)

    number_of_detections = len(result)

    # Limit to max_per_image detections **over all classes**
    if number_of_detections > cfg.FAST_RCNN.DETECTIONS_PER_IMG > 0:
        cls_scores = result.get_field("scores")
        image_thresh, _ = torch.kthvalue(
            cls_scores.cpu(),
            number_of_detections - cfg.FAST_RCNN.DETECTIONS_PER_IMG + 1)
        keep = cls_scores >= image_thresh.item()
        keep = torch.nonzero(keep).squeeze(1)
        result = result[keep]
    return result
예제 #15
0
 def prepare_boxlist(self, boxes, scores, image_shape):
     boxes = boxes.reshape(-1, 4)
     scores = scores.reshape(-1)
     boxlist = BoxList(boxes, image_shape, mode="xyxy")
     boxlist.add_field("scores", scores)
     return boxlist