예제 #1
0
파일: routines.py 프로젝트: pawsenn/phasme
def split_by_cc(fname:str, targets:str=None, order:str=None, slice=None,
                edge_predicate:str=edge_predicate) -> tuple:
    """Return names of targets written"""
    if not targets:
        name, ext = os.path.splitext(fname)
        targets = name + '_{}' + ext
    elif not isinstance(targets, str):
        raise ValueError("Target should be a filename to write")
    elif '{}' not in targets:
        raise ValueError("Target should be a filename to write containing '{}'")
    graph = graph_from_file(fname, edge_predicate=edge_predicate)
    writtens = []
    ccs = networkx.connected_components(graph)
    if order in {'biggest first', 'smaller last'}:
        ccs = sorted(tuple(ccs), key=len, reverse=True)
    elif order in {'biggest last', 'smaller first'}:
        ccs = sorted(tuple(ccs), key=len)
    elif order == 'random':
        ccs = list(ccs)
        random.shuffle(ccs)
    if slice:
        try:
            if len(slice) != 2 or any(not isinstance(v, int) for v in slice):
                raise TypeError  # trigger the exception handling
        except TypeError:  # slice is not iterable
            raise ValueError("Slice must be an iterable of two integers")
        start, end = slice
        ccs = tuple(ccs)[start:end]
    for idx, cc_nodes in enumerate(ccs, start=1):
        cc = graph.subgraph(cc_nodes)
        target = targets.format(idx)
        graph_to_file(cc, target)
        writtens.append(target)
    return tuple(writtens)
예제 #2
0
def test_graphml():
    file = 'data/test.graphml'
    one = comparable_graph(graph_from_file(file))
    two = comparable_graph(graph_from_standard_file(file))
    assert one == two
    assert one == frozenset(map(frozenset, ({'1', '2'}, {'1', '3'},
                                            {'2', '4'}, {'3', '4'})))
예제 #3
0
def test_many_atoms():
    file = 'data/many-atoms.lp'
    one = comparable_graph(graph_from_file(file))
    assert len(one) == 9, one
    assert one == frozenset({
        frozenset({'a', 'd'}), frozenset({'a', 'e'}),
        frozenset({'b', 'd'}), frozenset({'b', 'e'}),
        frozenset({'c', 'd'}), frozenset({'c', 'e'}),
        frozenset({'d', 'e'}), frozenset({'d', 'f'}),
        frozenset({'e', 'f'}),
    })
예제 #4
0
파일: routines.py 프로젝트: pawsenn/phasme
def convert(fname:str, target:str=None, anonymize:bool=False,
            normalize:bool=False, edge_predicate:str=edge_predicate,
            target_edge_predicate:str=edge_predicate) -> dict:
    """Write in target the very same graph as input, but in
    an clean ASP expanded format.

    normalize -- avoid special characters in node names.
    anonymize -- rename nodes into integers.
    target -- file to write. If None or equal to fname, overwrite.
    target_edge_predicate -- edge predicate to use in rewritten file.

    """
    fname = commons.normalize_filename(fname)
    if target: target = commons.normalize_filename(target)
    if not target:  target = fname
    graph = graph_from_file(fname, edge_predicate=edge_predicate)
    if anonymize:  graph = anonymized(graph)
    if normalize:  graph = normalized(graph)
    graph_to_file(graph, target, edge_predicate=target_edge_predicate)
예제 #5
0
파일: routines.py 프로젝트: Aluriak/phasme
def randomize(fname: str,
              target: str,
              iterations: int,
              per_cc: bool = False,
              edge_predicate: str = edge_predicate):
    """Write in file of given name a randomized version of input graph.

    """
    fname = commons.normalize_filename(fname)
    target = commons.normalize_filename(target)
    graph = graph_from_file(fname, edge_predicate=edge_predicate)
    if per_cc:
        graphs = (graph.subgraph(nodes).copy()
                  for nodes in networkx.connected_components(graph))
    else:
        graphs = [graph]

    def run():
        for graph in graphs:
            print(tuple(graph.edges))
            nb_edge = graph.number_of_edges()
            total_iterations = iterations * graph.number_of_edges()
            try:
                yield networkx.algorithms.double_edge_swap(
                    graph,
                    nswap=total_iterations,
                    max_tries=100 * total_iterations)
            except networkx.exception.NetworkXError as err:
                print(err.args[0])
                yield graph
            except networkx.exception.NetworkXAlgorithmError:
                print(
                    "Maximum number of swap attempts reached, or graph can't be swapped. Ignored."
                )
                yield graph

    if per_cc:
        graph = networkx.compose_all(run())
    else:
        graph = next(run())
    return graph_to_file(graph, target, edge_predicate=edge_predicate)
예제 #6
0
파일: routines.py 프로젝트: Aluriak/phasme
def extract_by_node(fname: str,
                    target: str = None,
                    nodes: iter = (),
                    order: int = 1,
                    edge_predicate: str = edge_predicate):
    """Write in file of given name a subgraph of input one.

    """
    fname = commons.normalize_filename(fname)
    if target: target = commons.normalize_filename(target)
    if not target: target = fname
    graph = graph_from_file(fname, edge_predicate=edge_predicate)
    nodes = set(nodes)
    all_neighbors = networkx.classes.function.all_neighbors
    for _ in range(order):
        nodes |= set(
            itertools.chain.from_iterable(
                all_neighbors(graph, node) for node in nodes))
    return graph_to_file(graph.subgraph(nodes),
                         target,
                         edge_predicate=edge_predicate)
예제 #7
0
파일: info.py 프로젝트: Aluriak/phasme
def yield_info(fname: str,
               info_motifs: int = 0,
               info_ccs: bool = True,
               graphics: bool = False,
               outdir: str = '.',
               special_nodes: bool = False,
               heavy_computations: bool = False,
               graph_properties: bool = False,
               negative_results: bool = True,
               edge_predicate: str = edge_predicate) -> dict:
    """Yield (field, value) infos of targets written

    info_motifs -- print info about the n first motifs in the graph
    info_ccs -- print info about connected components in the graph

    """
    outdir = commons.normalize_filename(outdir)
    graph = graph_from_file(fname, edge_predicate=edge_predicate)
    nb_node, nb_edge = len(graph.nodes), len(graph.edges)
    nb_self_loops = sum(1 for _ in graph.selfloop_edges())

    def density(nb_node, nb_edge):
        try:
            return 2 * nb_edge / (nb_node * (nb_node - 1))
        except ZeroDivisionError:
            import math
            return math.nan

    yield '#node', nb_node
    yield '#edge', nb_edge
    if nb_self_loops:
        yield '#loop', nb_self_loops
        yield '#edge - #loop', nb_edge - nb_self_loops
    else:
        yield 'no loop', True
    yield 'density', density(nb_node, nb_edge)

    if info_motifs:
        for motif in ():
            clyngor.solve()
    if info_ccs:
        ccs_nodes = tuple(networkx.connected_components(graph))
        ccs = tuple(graph.subgraph(cc) for cc in ccs_nodes)
        yield '#cc', len(ccs_nodes)
        if len(ccs_nodes) > 1:
            node_per_cc = tuple(map(len, ccs_nodes))
            yield '#node/cc', node_per_cc
            yield '#node/cc (prop)', tuple(nb / nb_node for nb in node_per_cc)
            yield '#node/cc (mean)', sum(node_per_cc) / len(node_per_cc)
            yield 'density/cc', tuple(
                density(len(nodes), len(tuple(cc.edges)))
                for cc, nodes in zip(ccs, ccs_nodes))

    if graphics:
        # TODO: degree distribution (lin-lin, log-lin, lin-log, log-log)
        # TODO: motif size distribution (if info_motifs > 1)
        # TODO: degree function to clustering coefficient
        ...

    if heavy_computations:
        # TODO: concept and AOC poset size and ratio.
        ...

    if special_nodes:
        # TODO: equivalences
        arti_points = tuple(networkx.articulation_points(graph))
        yield '#articulation points', len(arti_points)
        if arti_points:
            yield 'articulation points', arti_points

    if graph_properties:
        non_implemented = []
        for attrname, attr in vars(networkx).items():
            if attrname.startswith('is_'):
                attrname = attrname[3:]
                if getfullargspec(attr).args == ['G']:  # only 1 arg
                    try:
                        yield attrname, attr(graph)  # discard the 'is_'
                    except networkx.exception.NetworkXNotImplemented as err:
                        non_implemented.append(attrname)
                    except networkx.exception.NetworkXError as err:
                        non_implemented.append(attrname)

        properties = ('transitivity', 'average_clustering',
                      'average_node_connectivity',
                      'average_shortest_path_length')
        for attrname in properties:
            try:
                yield attrname, getattr(networkx, attrname)(graph)
            except networkx.exception.NetworkXError as err:
                non_implemented.append(attrname)
        if non_implemented and negative_results:
            yield 'non implemented', non_implemented
예제 #8
0
def test_gml():
    file = 'data/test.gml'
    one = comparable_graph(graph_from_file(file))
    two = comparable_graph(graph_from_standard_file(file))
    assert one == two