예제 #1
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "authoredOn",
             "dispenseRequest.validityPeriod.start",
             "dispenseRequest.validityPeriod.end",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "medicationCodeableConcept",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("context"),
             Frame.codeable_like_column_expander("note"),
             (
                 "dispenseRequest",
                 lambda r: pd.json_normalize(r).add_prefix(
                     "dispenseRequest."),
             ),
         ],
     )
예제 #2
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "period.start",
             "period.end",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "class",
             "priority",
             "participant",
             "length",
             "hospitalization",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("period"),
             Frame.codeable_like_column_expander("reason"),
             Frame.codeable_like_column_expander("location"),
             Frame.codeable_like_column_expander("serviceProvider"),
         ],
     )
예제 #3
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("presentedForm"),
             Frame.codeable_like_column_expander("result"),
         ],
     )
예제 #4
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[*expand_args.get("date_columns", []), "dateTime"],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("sourceReference"),
             Frame.codeable_like_column_expander("actor"),
             Frame.codeable_like_column_expander("patient"),
         ],
     )
예제 #5
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[*expand_args.get("date_columns", []), "date"],
         code_columns=[*expand_args.get("code_columns", []), "vaccineCode"],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("patient"),
             Frame.codeable_like_column_expander("encounter"),
         ],
     )
예제 #6
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         code_columns=[
             *expand_args.get("code_columns", []),
             "procedureCode",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("patient"),
             Frame.codeable_like_column_expander("context"),
         ],
     )
예제 #7
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         code_columns=[*expand_args.get("code_columns", []), "type"],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("context"),
             (
                 "requester",
                 lambda r: pd.json_normalize(r).add_prefix("requester."),
             ),
         ],
     )
예제 #8
0
    def transform_results(data_frame: pd.DataFrame, **expand_args):
        args = {
            **expand_args,
            "code_columns": [
                *expand_args.get("code_columns", []),
                "specimen",
                "repository",
            ],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("patient"),
                Frame.codeable_like_column_expander("referenceSeq"),
            ],
        }

        return Frame.expand(data_frame, **args)
    def transform_results(data_frame: pd.DataFrame, params={}, **expand_args):
        def expand_id(id_column: pd.Series):
            return pd.concat(
                [
                    id_column,
                    id_column.str.split(":", expand=True).rename(columns={
                        0: "variant_set_id",
                        2: "gene"
                    })[["variant_set_id", "gene"]],
                ],
                axis=1,
            )

        args = {
            **expand_args,
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                *[
                    Frame.codeable_like_column_expander(k) for k in [
                        "clinvar",
                        "cosmic",
                        "vcf",
                        "ensemblCanon",
                        "dbnsfp",
                    ]
                ],
                ("id", expand_id),
            ],
        }

        return Frame.expand(data_frame, **args)
예제 #10
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[*expand_args.get("date_columns", []), "date"],
         code_columns=[
             *expand_args.get("code_columns", []),
             "type",
             "author",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("text"),
             Frame.codeable_like_column_expander("relatesTo"),
         ],
     )
예제 #11
0
    def transform_results(data_frame: pd.DataFrame, **expand_args):
        args = {
            **expand_args,
            "code_columns": [
                *expand_args.get("code_columns", []),
                "component",
                "interpretation",
            ],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("subject"),
                Frame.codeable_like_column_expander("related"),
                Frame.codeable_like_column_expander("performer"),
                Frame.codeable_like_column_expander("context"),
            ],
        }

        return Frame.expand(data_frame, **args)
예제 #12
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "occurrencePeriod.start",
             "occurrencePeriod.end",
             "occurrenceDateTime",
             "authoredOn",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("context"),
             Frame.codeable_like_column_expander("occurrencePeriod"),
             Frame.codeable_like_column_expander("note"),
         ],
     )
예제 #13
0
    def transform_results(data_frame: pd.DataFrame, **expand_args):
        args = {
            **expand_args,
            "date_columns": [
                *expand_args.get("date_columns", []),
                "performedPeriod.start",
                "performedPeriod.end",
            ],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("subject"),
                Frame.codeable_like_column_expander("performedPeriod"),
                Frame.codeable_like_column_expander("context"),
                Frame.codeable_like_column_expander("managingOrganization"),
            ],
        }

        return Frame.expand(data_frame, **args)
예제 #14
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "effectiveDateTime",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "type",
             "subtype",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("agent"),
             Frame.codeable_like_column_expander("source"),
             Frame.codeable_like_column_expander("entity"),
         ],
     )
예제 #15
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "effectivePeriod.start",
             "effectivePeriod.end",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "medicationCodeableConcept",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("context"),
             Frame.codeable_like_column_expander("prescription"),
             Frame.codeable_like_column_expander("dosage"),
             Frame.codeable_like_column_expander("effectivePeriod"),
         ],
     )
예제 #16
0
파일: goal.py 프로젝트: lifeomic/phc-sdk-py
    def transform_results(data_frame: pd.DataFrame, **expand_args):
        args = {
            **expand_args,
            "date_columns":
            [*expand_args.get("date_columns", []), "startDate"],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("subject"),
            ],
        }

        return Frame.expand(data_frame, **args)
예제 #17
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "onsetDateTime",
             "assertedDate",
             "onsetPeriod.start",
             "onsetPeriod.end",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "bodySite",
             "stage",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             Frame.codeable_like_column_expander("onsetPeriod"),
             Frame.codeable_like_column_expander("context"),
         ],
     )
예제 #18
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         code_columns=[
             *expand_args.get("code_columns", []),
             "collection",
             "type",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
         ],
     )
예제 #19
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         code_columns=[
             *expand_args.get("code_columns", []),
             "medicationCodeableConcept",
             "quantity",
             "dosageInstruction",
             "daysSupply",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
         ],
     )
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "effectiveDateTime",
         ],
         code_columns=[
             *expand_args.get("code_columns", []),
             "medicationCodeableConcept",
         ],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
         ],
     )
예제 #21
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         code_columns=[*expand_args.get("code_columns", []), "type"],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             # TODO: Properly parse content column
             #
             # Example:
             # [{'attachment': {'contentType': 'application/gzip',
             #    'url': 'https://api.us.lifeomic.com/v1/files/<uuid>',
             #    'size': 182539,
             #    'title': 'helix-source-files/normalized/<filename>.vcf.gz'}}]
         ],
     )
예제 #22
0
    def transform_results(data_frame: pd.DataFrame, **expand_args):
        args = {
            **expand_args,
            "code_columns": [
                *expand_args.get("code_columns", []),
                "contained",
                "maritalStatus",
            ],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("managingOrganization"),
                ("address", expand_address_column),
                ("name", expand_name_column),
            ],
        }

        return Frame.expand(data_frame, **args)
예제 #23
0
 def transform_results(df: pd.DataFrame, **expand_args):
     return Frame.expand(
         df,
         date_columns=[
             *expand_args.get("date_columns", []),
             "occurrenceDateTime",
         ],
         code_columns=[*expand_args.get("code_columns", []), "bodySite"],
         custom_columns=[
             *expand_args.get("custom_columns", []),
             Frame.codeable_like_column_expander("subject"),
             (
                 "content",
                 lambda r: pd.json_normalize(r).add_prefix("content."),
             ),
         ],
     )
예제 #24
0
    def transform_results(
        data_frame: pd.DataFrame, params: dict, **expand_args
    ):
        args = {
            **expand_args,
            "code_columns": [
                *expand_args.get("code_columns", []),
                "bodySite",
                "patient",
            ],
            "custom_columns": [
                *expand_args.get("custom_columns", []),
                Frame.codeable_like_column_expander("sourceFile"),
            ],
        }
        df = Frame.expand(data_frame, **args)

        if "sets" in df.columns:
            df = (
                pd.concat(
                    data_frame.apply(
                        lambda x: pd.DataFrame(
                            [{"index": x.name, **s} for s in x.sets]
                        ),
                        axis=1,
                    ).values
                )
                .join(df.drop(["sets"], axis=1), on="index", rsuffix=".test")
                .drop(["index"], axis=1)
                .reset_index(drop=True)
            )

        test_type = params.get("type", None)

        if test_type and len(df) > 0:
            # TODO: Remove when API fixed

            # NOTE: The API does not filter the returned sets because it is a
            # nested structure. Since it's not a boatload of information, we opt
            # to filter client-side for now.
            return df[df.setType == test_type].reset_index(drop=True)

        return df
예제 #25
0
    def get_data_frame(document_id: str,
                       raw: bool = False,
                       auth_args: Auth = Auth.shared()):
        auth = Auth(auth_args)
        document = Document.get(document_id, auth_args=auth_args)

        file_id = pipe(
            document.get("content", []),
            c.filter(lambda c: c.get("format", {}).get("code") ==
                     "ocr-text-file-id"),
            c.first,
            c.get("attachment", default={}),
            c.get("url"),
            iffy(isa(str), lambda url: url.split("/")[-1]),
        )

        if file_id is None:
            raise ValueError(
                f"No block file found for document: '{document_id}'")

        files = Files(auth.session())
        filename = files.download(file_id, "/tmp/")

        frame = pd.read_json(filename, lines=True)
        os.remove(filename)

        if raw or len(frame) == 0:
            return frame

        return Block.sort(
            frame.drop(["Geometry"], axis=1).join(
                pd.json_normalize(frame.Geometry)).pipe(
                    partial(
                        Frame.expand,
                        custom_columns=[
                            Frame.codeable_like_column_expander("Polygon")
                        ],
                    )).set_index("Id"))