def implicit( field: FieldType, diffusivity: float or math.Tensor or Field, dt: float or math.Tensor, order: int = 1, solve_params: math.Solve = math.LinearSolve(bake='sparse') ) -> FieldType: """ Diffusion by solving a linear system of equations. Args: order: Order of method, 1=first order. This translates to `substeps` for the explicit sharpening. field: diffusivity: Diffusion per time. `diffusion_amount = diffusivity * dt` dt: Time interval. `diffusion_amount = diffusivity * dt` solve_params: Returns: Diffused field of same type as `field`. """ def sharpen(x): return explicit(x, diffusivity, -dt, substeps=order) converged, diffused, iterations = solve(sharpen, field, field, solve_params=solve_params) if math.all_available(converged): assert converged, f"Implicit diffusion solve did not converge after {iterations} iterations. Last estimate: {diffused.values}" return diffused
def test_make_incompressible_gradients_equal_tf_torch(self): DOMAIN = Domain(x=16, y=16, boundaries=OPEN, bounds=Box[0:100, 0:100]) # TODO CLOSED solve fails because div is not subtracted from dx velocity0 = DOMAIN.staggered_grid(Noise(vector=2)) grads = [] for backend in [TF_BACKEND, TORCH_BACKEND]: with backend: velocity = param = velocity0.with_(values=math.tensor(velocity0.values)) with math.record_gradients(param.values): solve = math.LinearSolve() velocity, _, _, _ = fluid.make_incompressible(velocity, DOMAIN, solve_params=solve) loss = field.l2_loss(velocity) assert math.isfinite(loss) grad = math.gradients(loss, param.values) assert math.all(math.isfinite(grad)) grads.append(grad) math.assert_close(*grads, abs_tolerance=1e-5)
def make_incompressible(velocity: Grid, domain: Domain, obstacles: tuple or list = (), solve_params: math.LinearSolve = math.LinearSolve( None, 1e-3), pressure_guess: CenteredGrid = None): """ Projects the given velocity field by solving for the pressure and subtracting its gradient. This method is similar to :func:`field.divergence_free()` but differs in how the boundary conditions are specified. Args: velocity: Vector field sampled on a grid domain: Used to specify boundary conditions obstacles: List of Obstacles to specify boundary conditions inside the domain (Default value = ()) pressure_guess: Initial guess for the pressure solve solve_params: Parameters for the pressure solve Returns: velocity: divergence-free velocity of type `type(velocity)` pressure: solved pressure field, `CenteredGrid` iterations: Number of iterations required to solve for the pressure divergence: divergence field of input velocity, `CenteredGrid` """ input_velocity = velocity active = domain.grid( HardGeometryMask(~union(*[obstacle.geometry for obstacle in obstacles])), extrapolation=domain.boundaries['active_extrapolation']) accessible = domain.grid( active, extrapolation=domain.boundaries['accessible_extrapolation']) hard_bcs = field.stagger(accessible, math.minimum, domain.boundaries['accessible_extrapolation'], type=type(velocity)) velocity = layer_obstacle_velocities(velocity * hard_bcs, obstacles).with_( extrapolation=domain.boundaries['near_vector_extrapolation']) div = divergence(velocity) if domain.boundaries[ 'near_vector_extrapolation'] == math.extrapolation.BOUNDARY: div -= field.mean(div) # Solve pressure def laplace(p): grad = gradient(p, type(velocity)) grad *= hard_bcs grad = grad.with_( extrapolation=domain.boundaries['near_vector_extrapolation']) div = divergence(grad) lap = where(active, div, p) return lap pressure_guess = pressure_guess if pressure_guess is not None else domain.scalar_grid( 0) converged, pressure, iterations = field.solve(laplace, y=div, x0=pressure_guess, solve_params=solve_params, constants=[active, hard_bcs]) if math.all_available(converged) and not math.all(converged): raise AssertionError( f"pressure solve did not converge after {iterations} iterations\nResult: {pressure.values}" ) # Subtract grad pressure gradp = field.gradient(pressure, type=type(velocity)) * hard_bcs velocity = (velocity - gradp).with_(extrapolation=input_velocity.extrapolation) return velocity, pressure, iterations, div
def make_incompressible( velocity: StaggeredGrid, domain: Domain, obstacles: tuple or list or StaggeredGrid = (), particles: PointCloud or None = None, solve_params: math.LinearSolve = math.LinearSolve(), pressure_guess: CenteredGrid = None ) -> Tuple[StaggeredGrid, CenteredGrid, math.Tensor, CenteredGrid, StaggeredGrid]: """ Projects the given velocity field by solving for the pressure and subtracting its spatial_gradient. Args: velocity: Current velocity field as StaggeredGrid obstacles: Sequence of `phi.physics.Obstacle` objects or binary StaggeredGrid marking through-flow cell faces particles (Optional if occupation masks are provided): Pointcloud holding the current positions of the particles domain (Optional if occupation masks are provided): Domain object pressure_guess (Optional): Initial pressure guess as CenteredGrid solve_params: Parameters for the pressure solve Returns: velocity: divergence-free velocity of type `type(velocity)` pressure: solved pressure field, `CenteredGrid` iterations: Number of iterations required to solve for the pressure divergence: divergence field of input velocity, `CenteredGrid` occupation_mask: StaggeredGrid """ points = particles.with_(values=math.wrap(1)) occupied_centered = points >> domain.grid() occupied_staggered = points >> domain.staggered_grid() if isinstance(obstacles, StaggeredGrid): accessible = obstacles else: accessible = domain.accessible_mask( union(*[obstacle.geometry for obstacle in obstacles]), type=StaggeredGrid) # --- Extrapolation is needed to exclude border divergence from the `occupied_centered` mask and thus # from the pressure solve. If particles are randomly distributed, the `occupied_centered` mask # could sometimes include the divergence at the borders (due to single particles right at the edge # which temporarily deform the `occupied_centered` mask when moving into a new cell) which would then # get compensated by the pressure. This is unwanted for falling liquids and therefore prevented by this # extrapolation. --- velocity_field, _ = extrapolate_valid(velocity * occupied_staggered, occupied_staggered, 1) velocity_field *= accessible # Enforces boundary conditions after extrapolation div = field.divergence( velocity_field ) * occupied_centered # Multiplication with `occupied_centered` excludes border divergence from pressure solve def matrix_eq(p): return field.where( occupied_centered, field.divergence( field.spatial_gradient(p, type=StaggeredGrid) * accessible), p) converged, pressure, iterations = field.solve(matrix_eq, div, pressure_guess or domain.grid(), solve_params=solve_params) gradp = field.spatial_gradient(pressure, type=type(velocity_field)) * accessible return velocity_field - gradp, pressure, iterations, div, occupied_staggered