예제 #1
0
파일: diffuse.py 프로젝트: salbali/PhiFlow
def fourier(field: GridType, diffusivity: float or math.Tensor, dt: float
            or math.Tensor) -> FieldType:
    """
    Exact diffusion of a periodic field in frequency space.

    For non-periodic fields or non-constant diffusivity, use another diffusion function such as `explicit()`.

    Args:
        field:
        diffusivity: Diffusion per time. `diffusion_amount = diffusivity * dt`
        dt: Time interval. `diffusion_amount = diffusivity * dt`

    Returns:
        Diffused field of same type as `field`.
    """
    if isinstance(field, ConstantField):
        return field
    assert isinstance(field,
                      Grid), "Cannot diffuse field of type '%s'" % type(field)
    assert field.extrapolation == math.extrapolation.PERIODIC, "Fourier diffusion can only be applied to periodic fields."
    amount = diffusivity * dt
    k = math.fftfreq(field.resolution)
    k2 = math.vec_squared(k)
    fft_laplace = -(2 * math.PI)**2 * k2
    diffuse_kernel = math.exp(fft_laplace * amount)
    result_k = math.fft(field.values) * diffuse_kernel
    result_values = math.real(math.ifft(result_k))
    return field.with_(values=result_values)
예제 #2
0
 def grid_sample(self,
                 resolution: math.Shape,
                 size,
                 shape: math.Shape = None):
     shape = (self._shape if shape is None else shape) & resolution
     for dim in channel(self._shape):
         if dim.item_names[0] is None:
             warnings.warn(
                 f"Please provide item names for Noise dim {dim} using {dim}='x,y,z'",
                 FutureWarning)
             shape &= channel(**{dim.name: resolution.names})
     rndj = math.to_complex(random_normal(shape)) + 1j * math.to_complex(
         random_normal(shape))  # Note: there is no complex32
     with math.NUMPY:
         k = math.fftfreq(resolution) * resolution / math.tensor(
             size) * math.tensor(self.scale)  # in physical units
         k = math.vec_squared(k)
     lowest_frequency = 0.1
     weight_mask = math.to_float(k > lowest_frequency)
     # --- Compute 1/k ---
     k._native[(0, ) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k._native[(0, ) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k**self.smoothness * weight_mask
     array = math.real(math.ifft(fft))
     array /= math.std(array, dim=array.shape.non_batch)
     array -= math.mean(array, dim=array.shape.non_batch)
     array = math.to_float(array)
     return array
예제 #3
0
 def grid_sample(self, resolution, size, batch_size=1, channels=None):
     channels = channels or self.channels or len(size)
     shape = (batch_size, ) + tuple(resolution) + (channels, )
     rndj = math.to_complex(
         self.math.random_normal(shape)) + 1j * math.to_complex(
             self.math.random_normal(shape))  # Note: there is no complex32
     k = math.fftfreq(
         resolution) * resolution / size * self.scale  # in physical units
     k = math.sum(k**2, axis=-1, keepdims=True)
     lowest_frequency = 0.1
     weight_mask = 1 / (1 + math.exp(
         (lowest_frequency - k) * 1e3))  # High pass filter
     # --- Compute 1/k ---
     k[(0, ) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k[(0, ) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k**self.smoothness * weight_mask
     array = math.real(math.ifft(fft))
     array /= math.std(array,
                       axis=tuple(range(1, math.ndims(array))),
                       keepdims=True)
     array -= math.mean(array,
                        axis=tuple(range(1, math.ndims(array))),
                        keepdims=True)
     array = math.to_float(array)
     return array
예제 #4
0
파일: util.py 프로젝트: hbcbh1999/PhiFlow
def diffuse(field, amount, substeps=1):
    assert isinstance(field, CenteredGrid)
    if field.extrapolation == 'periodic':
        frequencies = math.fft(math.to_complex(field.data))
        k = math.fftfreq(field.resolution) / field.dx
        k = math.sum(k**2, axis=-1, keepdims=True)
        fft_laplace = -(2 * pi)**2 * k
        diffuse_kernel = math.to_complex(math.exp(fft_laplace * amount))
        data = math.ifft(frequencies * diffuse_kernel)
        data = math.real(data)
    else:
        data = field.data
        for i in range(substeps):
            data += amount / substeps * field.laplace()
    return field.with_data(data)
예제 #5
0
 def grid_sample(self, resolution, size, batch_size=1, dtype=np.float32):
     shape = (batch_size,) + tuple(resolution) + (self.channels,)
     rndj = math.randn(shape, dtype) + 1j * math.randn(shape, dtype)
     k = math.fftfreq(resolution) * resolution / size * self.scale  # in physical units
     k = math.sum(k ** 2, axis=-1, keepdims=True)
     lowest_frequency = 0.1
     weight_mask = 1 / (1 + math.exp((lowest_frequency - k) * 1e3))  # High pass filter
     # --- Compute 1/k ---
     k[(0,) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k[(0,) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k ** self.smoothness * weight_mask
     array = math.real(math.ifft(fft)).astype(dtype)
     array /= math.std(array, axis=tuple(range(1, math.ndims(array))), keepdims=True)
     array -= math.mean(array, axis=tuple(range(1, math.ndims(array))), keepdims=True)
     return array
예제 #6
0
    def step(self, state, dt=1.0, potentials=(), obstacles=()):
        if len(potentials) == 0:
            potential = 0
        else:
            potential = math.zeros_like(math.real(
                state.amplitude))  # for the moment, allow only real potentials
            for pot in potentials:
                potential = effect_applied(pot, potential, dt)
            potential = potential.data

        amplitude = state.amplitude.data

        # Rotate by potential
        rotation = math.exp(1j * math.to_complex(potential * dt))
        amplitude = amplitude * rotation

        # Move by rotating in Fourier space
        amplitude_fft = math.fft(amplitude)
        laplace = math.fftfreq(state.resolution, mode='square')
        amplitude_fft *= math.exp(-1j * (2 * np.pi)**2 * math.to_complex(dt) *
                                  laplace / (2 * state.mass))
        amplitude = math.ifft(amplitude_fft)

        obstacle_mask = union_mask([
            obstacle.geometry for obstacle in obstacles
        ]).at(state.amplitude).data
        amplitude *= 1 - obstacle_mask

        normalized = False
        symmetric = False
        if not symmetric:
            boundary_mask = math.zeros(
                state.domain.centered_shape(1, batch_size=1)).data
            boundary_mask[[slice(None)] + [
                slice(self.margin, -self.margin)
                for i in math.spatial_dimensions(boundary_mask)
            ] + [slice(None)]] = 1
            amplitude *= boundary_mask

        if len(obstacles) > 0 or not symmetric:
            amplitude = normalize_probability(amplitude)
            normalized = True

        return state.copied_with(amplitude=amplitude)
예제 #7
0
파일: _noise.py 프로젝트: salbali/PhiFlow
 def grid_sample(self, resolution: math.Shape, size, shape: math.Shape = None):
     shape = (self._shape if shape is None else shape).combined(resolution)
     rndj = math.to_complex(random_normal(shape)) + 1j * math.to_complex(random_normal(shape))  # Note: there is no complex32
     with math.NUMPY_BACKEND:
         k = math.fftfreq(resolution) * resolution / size * self.scale  # in physical units
         k = math.vec_squared(k)
     lowest_frequency = 0.1
     weight_mask = 1 / (1 + math.exp((lowest_frequency - k) * 1e3))  # High pass filter
     # --- Compute 1/k ---
     k.native()[(0,) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k.native()[(0,) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k ** self.smoothness * weight_mask
     array = math.real(math.ifft(fft))
     array /= math.std(array, dim=array.shape.non_batch)
     array -= math.mean(array, dim=array.shape.non_batch)
     array = math.to_float(array)
     return array
예제 #8
0
def diffuse(field, amount, substeps=1):
    u"""
Simulate a finite-time diffusion process of the form dF/dt = α · ΔF on a given `Field` F with diffusion coefficient α.

If `field` is periodic (set via `extrapolation='periodic'`), diffusion may be simulated in Fourier space.
Otherwise, finite differencing is used to approximate the
    :param field: CenteredGrid, StaggeredGrid or ConstantField
    :param amount: number of Field, typically α · dt
    :param substeps: number of iterations to use
    :return: Field of same type as `field`
    :rtype: Field
    """
    if isinstance(field, ConstantField):
        return field
    if isinstance(field, StaggeredGrid):
        return struct.map(
            lambda grid: diffuse(grid, amount, substeps=substeps),
            field,
            leaf_condition=lambda x: isinstance(x, CenteredGrid))
    assert isinstance(
        field, CenteredGrid), "Cannot diffuse field of type '%s'" % type(field)
    if field.extrapolation == 'periodic' and not isinstance(amount, Field):
        frequencies = math.fft(field.data)
        k = math.fftfreq(field.resolution) / field.dx
        k = math.sum(k**2, axis=-1, keepdims=True)
        fft_laplace = -(2 * pi)**2 * k
        diffuse_kernel = math.to_complex(math.exp(fft_laplace * amount))
        data = math.ifft(frequencies * diffuse_kernel)
        data = math.real(data)
    else:
        data = field.data
        if isinstance(amount, Field):
            amount = amount.at(field).data
        else:
            amount = math.batch_align(amount, 0, data)
        for i in range(substeps):
            data += amount / substeps * field.laplace().data
    return field.with_data(data)
예제 #9
0
 def frequencies(self):
     return self.with_data(
         math.fftfreq(self.resolution, mode='vector') / self.dx)