def eom_sym(wg_width, length, middle_e_width, e_e_gap, chip_width, offset, radius): euler_y = mod_euler(radius=radius, angle=-45)[1][1] euler_x = mod_euler(radius=radius, angle=-45)[1][0] wg_wg_sep = (middle_e_width + e_e_gap) / 2 - 2 * euler_y straight = wg_wg_sep * np.sqrt(2) if wg_wg_sep < 0: raise Exception( "middle_e_width is set too small with respect to Euler radius") left = chip_width / 2 - length / 2 - 2 * euler_x - wg_wg_sep + offset right = left P1 = Path() P1.append(pp.straight(length=left)) P1.append(mod_euler(radius=radius, angle=-45)[0]) P1.append(pp.straight(length=straight)) P1.append(mod_euler(radius=radius, angle=45)[0]) P1.append(pp.straight(length=length)) P1.append(mod_euler(radius=radius, angle=45)[0]) P1.append(pp.straight(length=straight)) P1.append(mod_euler(radius=radius, angle=-45)[0]) P1.append(pp.straight(length=right)) X = CrossSection() X.add(width=wg_width, offset=0, layer=1) waveguide_device1 = P1.extrude(X) E = Device('EOM_GHz') b1 = E.add_ref(waveguide_device1) b2 = E.add_ref(waveguide_device1) b2.mirror((0, 0), (1, 0)) square = middle_e_width * 0.6 square_rec_offset = (middle_e_width - square) / 2 e_left = left + 2 * euler_x + wg_wg_sep e_right = left + 2 * euler_x + wg_wg_sep + length - square #side_e_width R = pg.rectangle(size=(length, middle_e_width), layer=10) S = pg.rectangle(size=(square, square), layer=2) #top electrode h_top = middle_e_width / 2 + e_e_gap E.add_ref(R).move([e_left, h_top]) E.add_ref(S).move([e_left, h_top + square_rec_offset]) E.add_ref(S).move([e_right, h_top + square_rec_offset]) #middle electrode E.add_ref(R).move([e_left, -middle_e_width / 2]) E.add_ref(S).move([e_left, -square / 2]) E.add_ref(S).move([e_right, -square / 2]) #bottom electrode h_bot = -3 * middle_e_width / 2 - e_e_gap E.add_ref(R).move([e_left, h_bot]) E.add_ref(S).move([e_left, h_bot + square_rec_offset]) E.add_ref(S).move([e_right, h_bot + square_rec_offset]) #E << R return E
def dcim(im_gap, im_length, coupler_l, im_r, im_angle, elec_w, e_e_gap, via, wg_width, V_Groove_Spacing): P = Path() euler_y = mod_euler(radius=im_r, angle=im_angle)[1][1] euler_x = mod_euler(radius=im_r, angle=im_angle)[1][0] l_bend = ((V_Groove_Spacing - im_gap - 4 * euler_y - wg_width) / 2) / np.sin(np.pi * im_angle / 180) P.append(pp.euler(radius=im_r, angle=-im_angle)) P.append(pp.straight(length=l_bend)) P.append(pp.euler(radius=im_r, angle=im_angle)) P.append(pp.straight(length=coupler_l)) P.append(pp.euler(radius=im_r, angle=im_angle)) P.append(pp.euler(radius=im_r, angle=-im_angle)) P.append(pp.straight(length=im_length)) P.append(pp.euler(radius=im_r, angle=-im_angle)) P.append(pp.euler(radius=im_r, angle=im_angle)) P.append(pp.straight(length=coupler_l)) P.append(pp.euler(radius=im_r, angle=im_angle)) P.append(pp.straight(length=l_bend)) P.append(pp.euler(radius=im_r, angle=-im_angle)) P.movey(V_Groove_Spacing) X = CrossSection() X.add(width=wg_width, offset=0, layer=30) IM = Device('IM') IM << P.extrude(X) IM << P.extrude(X).mirror(p1=[1, V_Groove_Spacing / 2], p2=[2, V_Groove_Spacing / 2]) R1 = pg.rectangle(size=(im_length, elec_w), layer=40) R2 = pg.rectangle(size=(im_length, elec_w), layer=40) R3 = pg.rectangle(size=(im_length, elec_w), layer=40) R4 = pg.rectangle(size=(im_length, elec_w), layer=40) movex = euler_x * 4 + coupler_l + l_bend * np.cos(np.pi * im_angle / 180) movey = euler_y * 2 + im_gap / 2 + wg_width IM << R1.move( [movex, V_Groove_Spacing / 2 + movey + e_e_gap / 2 - wg_width / 2]) IM << R2.move([ movex, V_Groove_Spacing / 2 + movey - e_e_gap / 2 - elec_w - wg_width / 2 ]) IM << R3.move( [movex, V_Groove_Spacing / 2 - movey + e_e_gap / 2 + wg_width / 2]) IM << R4.move([ movex, V_Groove_Spacing / 2 - movey - e_e_gap / 2 - elec_w + wg_width / 2 ]) return IM, movex
def straight(length: Number = 10, npoints: int = 2) -> Path: """Returns a straight path For transitions you should increase have at least 100 points Args: length: of straight npoints: number of points """ if length < 0: raise ValueError(f"length = {length} needs to be > 0") return path.straight(length=length, num_pts=npoints)
def mmi(W, L_tp, W_tp, L_mmi, W_mmi, Y_mmi): mm = 10**3 um = 1 # Create CrossSections X1 = CrossSection() X2 = CrossSection() X1.add(width=W, offset=0, layer=30, name='wg') X2.add(width=W_tp, offset=0, layer=30, name='wg') # create Devices by extruding them P1 = pp.straight(length=10 * um) P2 = pp.straight(length=10 * um) WG1 = P1.extrude(X1) WG2 = P2.extrude(X2) # Place both cross-section Devices and quickplot them D = Device() wg1 = D << WG1 wg2 = D << WG2 wg2.movex(L_tp) # Create the transitional CrossSection Xtrans = pp.transition(cross_section1=X1, cross_section2=X2, width_type='linear') # Create a Path for the transitional CrossSection to follow P3 = pp.straight(length=L_tp) # Use the transitional CrossSection to create a Device WG_in = P3.extrude(Xtrans) WG_out1 = P3.extrude(Xtrans) WG_out2 = P3.extrude(Xtrans) WG_out1.mirror((0, 1), (0, 0)) WG_out2.mirror((0, 1), (0, 0)) WG_in << pg.rectangle(size=(L_mmi, W_mmi), layer=30).move( [L_tp, -W_mmi / 2]) WG_in << WG_out1.move([L_mmi + 2 * L_tp, Y_mmi / 2]) WG_in << WG_out2.move([L_mmi + 2 * L_tp, -Y_mmi / 2]) return WG_in
def dcpm(L, elec_w, e_e_gap, via, wg_width): P = Path() P.append(pp.straight(length=L)) X = CrossSection() X.add(width=wg_width, offset=0, layer=30) DCPM = Device() DCPM << P.extrude(X) R1 = pg.rectangle(size=(L, elec_w), layer=40) R2 = pg.rectangle(size=(L, elec_w), layer=40) DCPM << R1.move([0, e_e_gap / 2]) DCPM << R2.move([0, -elec_w - e_e_gap / 2]) return DCPM
def rfpm(wg_width, length, middle_e_width, e_e_gap): side_electrode_width = middle_e_width * 2 P = Path() P.append(pp.straight(length=length)) X = CrossSection() X.add(width=wg_width, offset=0, layer=30) RFPM = Device() RFPM << P.extrude(X) Rt = pg.rectangle(size=(length, side_electrode_width), layer=40) Rm = pg.rectangle(size=(length, middle_e_width), layer=40) Rb = pg.rectangle(size=(length, side_electrode_width), layer=40) RFPM << Rt.move([0, e_e_gap / 2]) RFPM << Rm.move([0, -middle_e_width - e_e_gap / 2]) RFPM << Rb.move( [0, -middle_e_width - side_electrode_width - e_e_gap - e_e_gap / 2]) square = middle_e_width * 0.9 side_height = side_electrode_width * 0.9 square_rec_offset = (side_electrode_width - side_height) / 2 square_rec_offset_m = (middle_e_width - square) / 2 e_left = 0 e_right = e_left + length - square #side_e_width R = pg.rectangle(size=(length, middle_e_width), layer=40) R2 = pg.rectangle(size=(length, side_electrode_width), layer=40) S = pg.rectangle(size=(square, square), layer=50) S2 = pg.rectangle(size=(square, side_height), layer=50) #top electrode h_top = e_e_gap / 2 RFPM.add_ref(S2).move([e_left, h_top + square_rec_offset]) RFPM.add_ref(S2).move([e_right, h_top + square_rec_offset]) #middle electrode h_mid = -middle_e_width - e_e_gap / 2 RFPM.add_ref(S).move([e_left, h_mid + square_rec_offset_m]) RFPM.add_ref(S).move([e_right, h_mid + square_rec_offset_m]) #bottom electrode h_bot = -middle_e_width - side_electrode_width - e_e_gap - e_e_gap / 2 RFPM.add_ref(S2).move([e_left, h_bot + square_rec_offset]) RFPM.add_ref(S2).move([e_right, h_bot + square_rec_offset]) return RFPM
def mzi(length, radius, angle, wg_width, Y_mmi): P1 = Path() P1.append(pp.euler(radius=radius, angle=-angle)) P1.append(pp.euler(radius=radius, angle=angle)) P1.append(pp.straight(length=length)) P1.append(pp.euler(radius=radius, angle=angle)) P1.append(pp.euler(radius=radius, angle=-angle)) X = CrossSection() X.add(width=wg_width, offset=0, layer=30) waveguide_device1 = P1.extrude(X) E = Device('EOM_GHz') b1 = E.add_ref(waveguide_device1).move([0, -Y_mmi / 2]) b2 = E.add_ref(waveguide_device1).move([0, -Y_mmi / 2]) b2.mirror((0, 0), (1, 0)) return E
y_pos = wg_y_off + 3 * V_Groove_Spacing + 40 * um x_base = x_pos y_base = y_pos mi_x = x_pos + im_length #save for later alignment of mirrored path mi_y = y_pos IM = Device('IM') (IM, xl) = li.dcim(im_gap, im_length, coupler_l1, im_r, im_angle, elec_w, e_e_gap, via, wg_width_oc, V_Groove_Spacing) D << IM.move([x_pos, y_pos]) #straight input wg top P = Path() P.append(pp.straight(length=x_pos + xmargin)) P.movex(-xmargin) P.movey(y_pos + V_Groove_Spacing) X = CrossSection() X.add(width=wg_width_oc, offset=0, layer=30) D << P.extrude(X) #straight input wg bottom P = Path() P.append(pp.straight(length=x_pos + xmargin)) P.movex(-xmargin) P.movey(y_pos) #Some parameters for later that will help us connect this EOM to the next two eomdc_1xs = x_pos