예제 #1
0
# 
# If using `pblum_mode='dataset-scaled'` while optimizing, it is generally a good idea to disable this (set to 'component-coupled' or 'dataset-coupled' and sample over `pblum` to account for any correlations between the luminosities and your other sampled parameters.  For more details, see the [pblum tutorial](./pblum.ipynb).
# 
# If your observational uncertainties are not reliable, you may also want to sample over `sigmas_lnf` (the [emcee fitting a line tutorial](https://emcee.readthedocs.io/en/stable/tutorials/line/) has a nice overview on the mathematics, and the [inverse paper](http://phoebe-project.org/publications/2020Conroy+) describes the implementation within PHOEBE).
# 
# See the [distributions tutorial](./distributions.ipynb) for more details on adding distributions.

# In[12]:


b.add_distribution({'sma@binary': phoebe.gaussian_around(0.1),
                    'incl@binary': phoebe.gaussian_around(5),
                    't0_supconj': phoebe.gaussian_around(0.001),
                    'requiv@primary': phoebe.gaussian_around(0.2),
                    'pblum@primary': phoebe.gaussian_around(0.2),
                    'sigmas_lnf@lc01': phoebe.uniform(-1e9, -1e4),
                   }, distribution='ball_around_guess')


# It is useful to make sure that the model-parameter space represented by this initializing distribution covers the observations themselves.

# In[13]:


b.run_compute(compute='fastcompute', sample_from='ball_around_guess', 
              sample_num=20, model='init_from_model')


# In[14]:

예제 #2
0
    # b.add_distribution({'sma@binary': pb.gaussian_around(0.1),
    #                     'incl@binary': pb.gaussian_around(5),
    #                     't0_supconj': pb.gaussian_around(0.001),
    #                     'requiv@primary': pb.gaussian_around(0.2),
    #                     'pblum@primary': pb.gaussian_around(0.2),
    #                     'sigmas_lnf@lc01': pb.uniform(-1e9, -1e4),
    #                    }, distribution='ball_around_guess')

    b.add_distribution(
        {
            't0_supconj': pb.gaussian_around(0.001),
            'incl@binary': pb.gaussian_around(5),
            'q': pb.gaussian_around(1),
            'ecc': pb.gaussian_around(0.005),
            'per0': pb.gaussian_around(0.2),
            'sigmas_lnf@lc01': pb.uniform(-1e9, -1e4),
        },
        distribution='ball_around_guess')

    b.run_compute(model='EMCEE_Fit',
                  compute='fastcompute',
                  sample_from='ball_around_guess',
                  sample_num=20)

    b.set_value('init_from', 'ball_around_guess')

    b.set_value(
        'nwalkers', solver='emcee_solver', value=12
    )  #Define number of walkers. Must be twice number of parameters
    b.set_value('niters', solver='emcee_solver',
                value=250)  #Define number of iterations
예제 #3
0
# * [rename_distribution](../api/phoebe.frontend.bundle.Bundle.rename_distribution.md)
# * [remove_distribution](../api/phoebe.frontend.bundle.Bundle.remove_distribution.md)

# In[7]:


print(b.get_distribution(distribution='mydist'))


# Now let's add another distribution, with the same `distribution` tag, to the inclination of the binary.

# In[8]:


b.add_distribution(qualifier='incl', component='binary',
                   value=phoebe.uniform(80,90),
                   distribution='mydist')


# In[9]:


print(b.get_distribution(distribution='mydist'))


# Accessing & Plotting Distributions
# --------------------

# The parameters we've created and attached are [DistributionParameters](../api/phoebe.parameters.DistributionParameter.md) and live in `context='distribution'`, with all other tags matching the parameter they're referencing.  For example, let's filter and look at the distributions we've added.

# In[10]:
예제 #4
0
# In[4]:

b = phoebe.default_binary()

# In[5]:

b.set_value('latex_repr', component='binary', value='orb')
b.set_value('latex_repr', component='primary', value='1')
b.set_value('latex_repr', component='secondary', value='2')

# In[6]:

b.add_distribution(
    {
        'sma@binary': phoebe.uniform(5, 8),
        'incl@binary': phoebe.gaussian(75, 10)
    },
    distribution='mydist')

# # Plotting Distributions

# In[7]:

dist = b.get_parameter('sma', component='binary',
                       context='component').get_distribution('mydist')

plt.clf()
figure = plt.figure(figsize=(4, 4))
_ = dist.plot(plot_uncertainties=False)
_ = plt.tight_layout()
예제 #5
0
# * [b.calculate_residuals](../api/phoebe.parameters.ParameterSet.calculate_residuals.md)
# * [b.calculate_chi2](../api/phoebe.parameters.ParameterSet.calculate_chi2.md)
# * [b.calculate_lnlikelihood](../api/phoebe.parameters.ParameterSet.calculate_lnlikelihood.md)
# * [b.calculate_lnp](../api/phoebe.frontend.bundle.Bundle.calculate_lnp.md)
# 
# The log-probability used as the merit function within optimizers and samplers is defined as [calculate_lnp](../api/phoebe.frontend.bundle.Bundle.calculate_lnp.md)`(priors, combine=priors_combine)` + [calculate_lnlikelihood](../api/phoebe.parameters.ParameterSet.calculate_lnlikelihood).
# 
# To see the affect of `priors_combine`, we can pass the `solver` tag directly to [b.get_distribution_collection](../api/phoebe.frontend.bundle.Bundle.get_distribution_collection.md), [b.plot_distribution_collection](../api/phoebe.frontend.bundle.Bundle.plot_distribution_collection.md), or [b.calculate_lnp](../api/phoebe.frontend.bundle.Bundle.calculate_lnp.md).

# In[14]:


b.add_distribution('teff@primary', phoebe.gaussian(6000,100), distribution='mydist01')
b.add_distribution('teff@secondary', phoebe.gaussian(5500,600), distribution='mydist01')

b.add_distribution('teff@primary', phoebe.uniform(5800,6200), distribution='mydist02')


# In[15]:


b.add_solver('sampler.emcee', priors=['mydist01', 'mydist02'], solver='myemceesolver')


# In[16]:


print(b.filter(qualifier='prior*'))


# Now we'll look at the affect of `priors_combine` on the resulting priors distributions that would be sent to the merit function.