def main(): get_photometry(sys.argv[1], sys.argv[2]) with open('NGC4621_i.cat', 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) tmp2 = map(lambda line: Sources.SCAMSource(line), tmp) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) i_sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) with open('NGC4621_i.cat', 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) map(lambda line: i_sources.insert(Sources.SCAMSource(line)), tmp) makeRegionFile.makeRegionFile('NGC4621_i.cat', 'NGC4621_i.reg', 10, 'blue') with open('NGC4621_g.cat', 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) tmp2 = map(lambda line: Sources.SCAMSource(line), tmp) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) g_sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) with open('NGC4621_g.cat', 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) map(lambda line: g_sources.insert(Sources.SCAMSource(line)), tmp) makeRegionFile.makeRegionFile('NGC4621_g.cat', 'NGC4621_g.reg', 10, 'blue') # Aaron gave me the coordinates m59_ucd3_i = i_sources.match(190.54601, 11.64478) m59_ucd3_g = g_sources.match(190.54601, 11.64478) print '\n' print "M58-UCD3's Location in catalog: ", m59_ucd3_i.name print "I Mag and G Mag: ", m59_ucd3_i.mag_auto, m59_ucd3_g.mag_auto print 'M59-UCD3 g-i: ', m59_ucd3_g.mag_auto - m59_ucd3_i.mag_auto print 'M59-UCD3 FWHM: ', m59_ucd3_g.fwhm*0.2 print "Coordinates from i-band catalog - " print phot_utils.convertRA(m59_ucd3_i.ra), phot_utils.convertDEC(m59_ucd3_i.dec) print "Coordinates from g-band catalog - " print phot_utils.convertRA(m59_ucd3_g.ra), phot_utils.convertDEC(m59_ucd3_g.dec) print '\n' print '\n' m59cO_i = i_sources.match(190.48056, 11.66771) m59cO_g = g_sources.match(190.48056, 11.66771) print "M59cO's Location in catalog: ", m59cO_i.name print "I Mag and G Mag: ", m59cO_i.mag_auto, m59cO_g.mag_auto print 'M59cO g-i: ', m59cO_g.mag_auto - m59cO_i.mag_auto print "Coordinates from i-band catalog - " print phot_utils.convertRA(m59cO_i.ra), phot_utils.convertDEC(m59cO_i.dec) print "Coordinates from g-band catalog - " print phot_utils.convertRA(m59cO_g.ra), phot_utils.convertDEC(m59cO_g.dec) print '\n'
def correct_mags(galaxy, catalog, band): print "band: ", band zp = calcZeropoint.calcZP(galaxy, catalog, band) if verbose: print "Zeropoint for " + band + "-band", zp with open(catalog, 'r') as f: tmp = filter(lambda line: phot_utils.no_head(line), f) sources = map(lambda line: Sources.SCAMSource(line), tmp) for source in sources: source.mag_aper = round(source.mag_aper + zp, 3) source.mag_auto = round(source.mag_auto + zp, 3) source.mag_best = round(source.mag_best + zp, 3) new_catalog = 'zpcorrected_' + catalog with open(new_catalog, 'w') as output: output.write(''.join( map( lambda source: '%5s' % source.name + '%15s' % source.flux_iso + '%15s' % source.fluxerr_iso + '%15s' % source.flux_aper + '%15s' % source.fluxerr_aper + '%15s' % source.ximg + '%15s' % source.yimg + '%15s' % source.ra + '%15s' % source.dec + '%15s' % source.mag_auto + '%15s' % source.mag_auto_err + '%15s' % source.mag_best + '%15s' % source.mag_best_err + '%15s' % source.mag_aper + '%15s' % source.mag_aper_err + '%15s' % source.a_world + '%15s' % source.a_world_err + '%15s' % source. b_world + '%15s' % source.b_world_err + '%15s' % source. theta_err + '%15s' % source.theta + '%15s' % source.isoarea + '%15s' % source.mu + '%15s' % source.flux_radius + '%15s' % source.flags + '%15s' % source.fwhm + '%15s' % source.elogation + '%15s' % source.vignet + '\n', sources))) return new_catalog
def fromFile(filename, outname, pixsize, color): with open(filename, "r") as catalog: sources = [Sources.SCAMSource(line) for line in catalog if phot_utils.no_head(line)] with open(outname, "w") as out: for source in sources: out.write("physical;circle(" + str(source.ximg) + "," + str(source.yimg) + "," + str(pixsize) + ") #color=" + str(color) + "\n")
def correct_mags(galaxy, catalog, band): print "band: ", band zp = calcZeropoint.calcZP(galaxy, catalog, band) if verbose: print "Zeropoint for " + band + "-band", zp with open(catalog, 'r') as f: tmp = filter(lambda line: phot_utils.no_head(line), f) sources = map(lambda line: Sources.SCAMSource(line), tmp) for source in sources: source.mag_aper = round(source.mag_aper + zp, 3) source.mag_auto = round(source.mag_auto + zp, 3) source.mag_best = round(source.mag_best + zp, 3) new_catalog = 'zpcorrected_' + catalog with open(new_catalog, 'w') as output: output.write(''.join(map(lambda source: '%5s' % source.name + '%15s' % source.flux_iso + '%15s' % source.fluxerr_iso + '%15s' % source.flux_aper + '%15s' % source.fluxerr_aper + '%15s' % source.ximg + '%15s' % source.yimg + '%15s' % source.ra + '%15s' % source.dec + '%15s' % source.mag_auto + '%15s' % source.mag_auto_err + '%15s' % source.mag_best + '%15s' % source.mag_best_err + '%15s' % source.mag_aper + '%15s' % source.mag_aper_err + '%15s' % source.a_world + '%15s' % source.a_world_err + '%15s' % source.b_world + '%15s' % source.b_world_err + '%15s' % source.theta_err + '%15s' % source.theta + '%15s' % source.isoarea + '%15s' % source.mu + '%15s' % source.flux_radius + '%15s' % source.flags + '%15s' % source.fwhm + '%15s' % source.elogation + '%15s' % source.vignet + '\n', sources))) return new_catalog
def calcZP(galaxy, scam, band): """ To calculate the zeropoint of the Subaru image match the Subaru catalog and the table returned from Vizier. """ sdss = getSDSS(galaxy) column = str(band + 'mag') print "Column: ", column # Get only the brightest sources of both SDSS and Subaru. mag = map(lambda source: source[column], sdss) max_mag = np.mean(mag) + 0.25*np.mean(np.std(mag)) sdss = filter(lambda s: phot_utils.mag_cut(s[column], 18, max_mag), sdss) with open(scam, 'r') as f: catalog = [S.SCAMSource(line) for line in f if phot_utils.no_head(line)] mag = map(lambda s: s.mag_best, catalog) max_mag = np.mean(mag) + 0.25*np.mean(np.std(mag)) sources = filter(lambda s: phot_utils.mag_cut(s.mag_best, 18, max_mag), catalog) ra = [source.ra for source in catalog] dec = [source.dec for source in catalog] scam_sources = Q.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) map(lambda sources: scam_sources.insert(sources), sources) matches = associate(sdss, scam_sources) m_scam_sources = map(lambda source: source.mag_aper, matches) m_sdss_sources = map(lambda source: source.match2[column], matches) # Clip outliers of (m_sdss - m_scam) difference = [] for m_sdss, m_scam in zip(m_sdss_sources, m_scam_sources): difference.append(m_sdss - m_scam) std = np.std(difference) # Make a region file to check the matching makeRegionFile.fromList(matches, band + "_scam_match_source.reg", 0.1, "red") makeRegionFile.fromList(matches, band + "_sdss_match_source.reg", 0.1, "green") clipped = [] for entry in matches: if entry.match2[column] - entry.mag_aper < std*3: clipped.append(entry) difference = [] for entry in clipped: difference.append(entry.match2[column] - entry.mag_aper) m_scam = map(lambda source: source.mag_aper, clipped) # Look at offsets plt.plot(difference, m_scam, linestyle='none', marker='o') plt.xlabel(r'$m_{SDSS}$ - $m_{SCAM}$', fontsize=20) plt.ylabel(r'$m_{SCAM}$', fontsize=20, labelpad=30) path = os.getcwd() phot_utils.save(path, band + '_zp.png') # Take median of offset return np.median(difference)
def makeRegionFile(filename, outname, pixsize, color): catalog = open(filename, "r") tmp = filter(lambda line: pu.no_head(line), catalog) sources = map(lambda line: S.SCAMSource(line), tmp) out = open(outname, "w") for source in sources: out.write("physical;circle(" + str(source.ximg) + "," + str(source.yimg) + "," + str(pixsize) + ") #color=" + str(color) + "\n")
def make_trees(catalog): with open(catalog, 'r') as f: tmp = filter(lambda line: phot_utils.no_head(line), f) tmp2 = map(lambda line: Sources.SCAMSource(line), tmp) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) map(lambda line: sources.insert(line), tmp2) #if verbose: # makeRegionFile.makeRegionFile('NGC4621_i.cat', 'NGC4621_i.reg', 10, 'blue') return sources
def make_trees(catalog): with open(catalog, 'r') as f: tmp = filter(lambda line: phot_utils.no_head(line), f) tmp2 = map(lambda line: Sources.SCAMSource(line), tmp) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) map(lambda line: sources.insert(line), tmp2) if verbose: makeRegionFile.makeRegionFile('NGC4621_i.cat', 'NGC4621_i.reg', 10, 'blue') return sources
def main(): #get_photometry(sys.argv[1], sys.argv[2]) catalogs = (glob.glob('NGC4621*.cat')) for catalog in catalogs: if verbose: print "Working on catalog: ", catalog corrected_catalog = correct_mags(sys.argv[1], catalog, catalog[-5]) sys.exit() with open('NGC4621_g.cat', 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) g_sources = map(lambda source: Sources.SCAMSource(source), tmp) r_sources = make_trees('NGC4621_r.cat') i_sources = make_trees('NGC4621_i.cat') matches = associate(g_sources, r_sources, i_sources) with open('matched_gri.cat', 'w') as out: out.write()
def calcZP(galaxy, scam, band): """ To calculate the zeropoint of the Subaru image match the Subaru catalog and the table returned from Vizier. """ sdss = getSDSS(galaxy) column = str(band + 'mag') with open(scam, 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) # Do magnitude cute on data here tmp2 = map(lambda line: S.SCAMSource(line), tmp) mag = map(lambda s: s.mag_best, tmp2) max_mag = phot_utils.calc_average(mag) + 0.25 * phot_utils.calc_average( phot_utils.variance(mag)) sources = filter(lambda s: phot_utils.mag_cut(s.mag_best, 0, max_mag), tmp2) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) scam_sources = Q.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) map(lambda sources: scam_sources.insert(sources), sources) matches = associate(sdss, scam_sources) m_scam = map(lambda source: source.mag_aper, matches) m_sdss = map(lambda source: source.match2[column], matches) # Clip outliers of (m_sdss - m_scam) difference = [] for i, entry in enumerate(m_scam): difference.append(m_sdss[i] - m_scam[i]) std = np.std(difference) # Make a region file to check the matching with open("scam_match_source.reg", "w") as out: for source in matches: out.write("j2000; circle " + str(phot_utils.convertRA(source.ra)) + "," + str(phot_utils.convertDEC(source.dec)) + " .1' #color=red \n") with open("sdss_match_source.reg", "w") as out: for source in matches: out.write("j2000; circle " + str(phot_utils.convertRA(source.match2['RAJ2000'])) + "," + str(phot_utils.convertDEC(source.match2['DEJ2000'])) + " .15' #color=green \n") clipped = [] for entry in matches: if entry.match2[column] - entry.mag_aper < std * 3: clipped.append(entry) difference = [] for entry in clipped: difference.append(entry.match2[column] - entry.mag_aper) m_scam = map(lambda source: source.mag_aper, clipped) # Look at offsets plt.plot(difference, m_scam, linestyle='none', marker='o') plt.xlabel(r'$m_{SDSS}$ - $m_{SCAM}$', fontsize=20) plt.ylabel(r'$m_{SCAM}$', fontsize=20, labelpad=30) plt.show() # Take median of offset return phot_utils.calc_median(difference)
def findBestAperture(path, image, satur, seeing): if os.path.isdir('BestApertureFiles') == False: os.mkdir('BestApertureFiles') sname = "sign" nname = "noise" filter_file = "default.conv" assoc_file = "measurefluxat.txt" output = open(assoc_file, "w") for i in xrange(0, 100000): output.write('%.3f' % r.uniform(1, 11000) + '%10.3f' % r.uniform(1, 9000) + '\n') sp.createSexParam(sname, False) sp.createSexParam(nname, True) sparam_file = sname + ".param" nparam_file = nname + ".param" signal = [] noise = [] aperture = np.linspace(0.5, 12, num=10) for ap in aperture: sc.createSexConfig(sname, filter_file, sparam_file, satur, seeing, "nill", ap, False) call(['sex', '-c', sname + '.config', image]) sc.createSexConfig(nname, filter_file, nparam_file, satur, seeing, assoc_file, ap, True) call(['sex', '-c', nname + '.config', image]) scat = open(sname + ".cat") stmp = filter(lambda line: pu.no_head(line), scat) ncat = open(nname + ".cat") ntmp = filter(lambda line: pu.no_head(line), ncat) # Background measuresments can't overlap with source detections ssources = q.ScamPixelQuadtree(0, 0, 12000, 10000) map(lambda line: ssources.insert(S.SCAMSource(line)), stmp) nsources = map(lambda line: S.SCAMSource(line), ntmp) start = time.time() bkgddetections = disassociate(nsources, ssources, ap) end = time.time() print("ELAPSED TIME: " + str(end - start)) srcdetections = map(lambda line: S.SCAMSource(line), stmp) flux = map(lambda f: f.flux_aper, bkgddetections) noise.append(pu.calc_MAD(flux)) flux = map(lambda f: f.flux_aper, srcdetections) signal.append(pu.calc_MAD(flux)) with open(image[-6] + "_ap_" + str(round(ap, 2)) + "noise.txt", "w") as output: for source in bkgddetections: output.write(source.line) call([ 'mv', image[-6] + "_ap_" + str(round(ap, 2)) + "noise.txt", 'BestApertureFiles' ]) with open(image[-6] + "_ap_" + str(round(ap, 2)) + "signal.txt", "w") as output: for source in srcdetections: output.write(source.line) call([ 'mv', image[-6] + "_ap_" + str(round(ap, 2)) + "signal.txt", 'BestApertureFiles' ]) ''' The files generated here aren't important and need to be removed for the next steps to work properly. ''' try: os.remove('measurefluxat.txt') except OSError: pass noise_files = (glob.glob('noise*')) try: for f in noise_files: os.remove(f) except OSError: pass sign_files = (glob.glob('sign*')) try: for f in sign_files: os.remove(f) except OSError: pass snr = [] for i in range(len(noise)): snr.append(signal[i] / noise[i]) plt.plot(aperture, snr, linestyle='none', marker='o') plt.xlabel('Aperture (pix)') plt.ylabel('SNR') pu.save(path, image[-6] + '_snr') maxsnr = snr.index(max(snr)) return aperture[maxsnr]
def findBestAperture(path, image, satur, seeing): if os.path.isdir('BestApertureFiles') == False: os.mkdir('BestApertureFiles') sname = "sign" nname = "noise" filter_file = "default.conv" assoc_file = "measurefluxat.txt" output = open(assoc_file, "w") for i in xrange(0,100000): output.write('%.3f' % r.uniform(1,11000) + '%10.3f' % r.uniform(1,9000) + '\n') sp.createSexParam(sname, False) sp.createSexParam(nname, True) sparam_file = sname + ".param" nparam_file = nname + ".param" signal = [] noise = [] aperture = np.linspace(0.5, 12, num=10) for ap in aperture: sc.createSexConfig(sname, filter_file, sparam_file, satur, seeing, "nill", ap, False) call(['sex', '-c', sname + '.config', image]) sc.createSexConfig(nname, filter_file, nparam_file, satur, seeing, assoc_file, ap, True) call(['sex', '-c', nname + '.config', image]) scat = open(sname + ".cat") stmp = filter(lambda line: pu.no_head(line), scat) ncat = open(nname + ".cat") ntmp = filter(lambda line: pu.no_head(line), ncat) # Background measuresments can't overlap with source detections ssources = q.ScamPixelQuadtree(0, 0, 12000, 10000) map(lambda line: ssources.insert(S.SCAMSource(line)), stmp) nsources = map(lambda line: S.SCAMSource(line), ntmp) start = time.time() bkgddetections = disassociate(nsources, ssources, ap) end = time.time() print("ELAPSED TIME: " + str(end-start)) srcdetections = map(lambda line: S.SCAMSource(line), stmp) flux = map(lambda f: f.flux_aper, bkgddetections) noise.append(pu.calc_MAD(flux)) flux = map(lambda f: f.flux_aper, srcdetections) signal.append(pu.calc_MAD(flux)) with open(image[-6] + "_ap_" + str(round(ap, 2)) + "noise.txt", "w") as output: for source in bkgddetections: output.write(source.line) call(['mv', image[-6] + "_ap_" + str(round(ap, 2)) + "noise.txt", 'BestApertureFiles']) with open(image[-6] + "_ap_" + str(round(ap, 2)) + "signal.txt", "w") as output: for source in srcdetections: output.write(source.line) call(['mv', image[-6] + "_ap_" + str(round(ap, 2)) + "signal.txt", 'BestApertureFiles']) ''' The files generated here aren't important and need to be removed for the next steps to work properly. ''' try: os.remove('measurefluxat.txt') except OSError: pass noise_files = (glob.glob('noise*')) try: for f in noise_files: os.remove(f) except OSError: pass sign_files = (glob.glob('sign*')) try: for f in sign_files: os.remove(f) except OSError: pass snr = [] for i in range(len(noise)): snr.append(signal[i]/noise[i]) plt.plot(aperture, snr, linestyle='none', marker='o') plt.xlabel('Aperture (pix)') plt.ylabel('SNR') pu.save(path, image[-6]+'_snr') maxsnr = snr.index(max(snr)) return aperture[maxsnr]
import random as r import Quadtree import Sources as S import phot_utils sources = Quadtree.ScamPixelQuadtree(0, 0, 15000, 15000) with open("/Users/alexawork/Documents/GlobularClusters/Photometry/NGC4649/NGC4649_g.cat") as f: tmp = filter(lambda line: phot_utils.no_head(line), f) map(lambda line: sources.insert(S.SCAMSource(line)), tmp) sources.match(10, 15) sources.debug()
def calcZP(galaxy, scam, band): """ To calculate the zeropoint of the Subaru image match the Subaru catalog and the table returned from Vizier. """ sdss = getSDSS(galaxy) column = str(band + 'mag') with open(scam, 'r') as catalog: tmp = filter(lambda line: phot_utils.no_head(line), catalog) # Do magnitude cute on data here tmp2 = map(lambda line: S.SCAMSource(line), tmp) mag = map(lambda s: s.mag_best, tmp2) max_mag = phot_utils.calc_average(mag) + 0.25*phot_utils.calc_average(phot_utils.variance(mag)) sources = filter(lambda s: phot_utils.mag_cut(s.mag_best, 0, max_mag), tmp2) ra = map(lambda line: line.ra, tmp2) dec = map(lambda line: line.dec, tmp2) scam_sources = Q.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) map(lambda sources: scam_sources.insert(sources), sources) matches = associate(sdss, scam_sources) m_scam = map(lambda source: source.mag_aper, matches) m_sdss = map(lambda source: source.match2[column], matches) # Clip outliers of (m_sdss - m_scam) difference = [] for i, entry in enumerate(m_scam): difference.append(m_sdss[i] - m_scam[i]) std = np.std(difference) # Make a region file to check the matching with open("scam_match_source.reg", "w") as out: for source in matches: out.write("j2000; circle " + str(phot_utils.convertRA(source.ra)) + "," + str(phot_utils.convertDEC(source.dec)) + " .1' #color=red \n") with open("sdss_match_source.reg", "w") as out: for source in matches: out.write("j2000; circle " + str(phot_utils.convertRA(source.match2['RAJ2000'])) + "," + str(phot_utils.convertDEC(source.match2['DEJ2000'])) + " .15' #color=green \n") clipped = [] for entry in matches: if entry.match2[column] - entry.mag_aper < std*3: clipped.append(entry) difference = [] for entry in clipped: difference.append(entry.match2[column] - entry.mag_aper) m_scam = map(lambda source: source.mag_aper, clipped) # Look at offsets plt.plot(difference, m_scam, linestyle='none', marker='o') plt.xlabel(r'$m_{SDSS}$ - $m_{SCAM}$', fontsize=20) plt.ylabel(r'$m_{SCAM}$', fontsize=20, labelpad=30) plt.show() # Take median of offset return phot_utils.calc_median(difference)
import random as r import Quadtree import Sources as S import phot_utils sources = Quadtree.ScamPixelQuadtree(0, 0, 15000, 15000) with open( "/Users/alexawork/Documents/GlobularClusters/Photometry/NGC4649/NGC4649_g.cat" ) as f: tmp = filter(lambda line: phot_utils.no_head(line), f) map(lambda line: sources.insert(S.SCAMSource(line)), tmp) sources.match(10, 15) sources.debug()
import Quadtree import phot_utils import _angular_dist import _norm def associate(list1, tree2): dist = 5 with open("test.reg", "w") as out: for entry in list1: match2 = tree2.match(entry.ximg, entry.yimg) if match2 != None and _norm.norm(entry.ximg, entry.yimg, match2.ximg, match2.yimg) <= dist: out.write("physical;circle(" + str(entry.ximg) + "," + str(entry.yimg) + " 10) #color=red \n") with open('NGC4621_i.cat', 'r') as f: i_catalog = [Sources.SCAMSource(line) for line in f if phot_utils.no_head(line)] with open('NGC4621_g.cat', 'r') as f: g_catalog = [Sources.SCAMSource(line) for line in f if phot_utils.no_head(line)] ximg = [source.ximg for source in i_catalog] yimg = [source.yimg for source in i_catalog] sources = Quadtree.ScamPixelQuadtree(min(ximg), min(yimg), max(ximg), max(yimg)) #ra = [source.ra for source in i_catalog] #dec = [source.dec for source in i_catalog] #sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec)) [sources.insert(source) for source in i_catalog] #match = sources.match(190.7027198, 11.3355764)
def associate(list1, tree2): dist = 5 with open("test.reg", "w") as out: for entry in list1: match2 = tree2.match(entry.ximg, entry.yimg) if match2 != None and _norm.norm(entry.ximg, entry.yimg, match2.ximg, match2.yimg) <= dist: out.write("physical;circle(" + str(entry.ximg) + "," + str(entry.yimg) + " 10) #color=red \n") with open('NGC4621_i.cat', 'r') as f: i_catalog = [ Sources.SCAMSource(line) for line in f if phot_utils.no_head(line) ] with open('NGC4621_g.cat', 'r') as f: g_catalog = [ Sources.SCAMSource(line) for line in f if phot_utils.no_head(line) ] ximg = [source.ximg for source in i_catalog] yimg = [source.yimg for source in i_catalog] sources = Quadtree.ScamPixelQuadtree(min(ximg), min(yimg), max(ximg), max(yimg)) #ra = [source.ra for source in i_catalog] #dec = [source.dec for source in i_catalog] #sources = Quadtree.ScamEquatorialQuadtree(min(ra), min(dec), max(ra), max(dec))