예제 #1
0
    def get_sky_from_annulus(self, r_in=3, r_out=5, units='arcsec'):
        """ Measure the sky flux with aperture photometry in an annulus.
        :param r_in, r_out: float
            inner, outer radius of the sky annulus
        :param units: 'arcsec' or 'pixels'
           units for the radii. 
        :return: skyval : the measured average sky brightness per pixel.
        """
        self.skyxy = [self.x_0, self.y_0]
        if units.lower()=='arcsec':
            r_in = r_in / self.pixscale
            r_out = r_out / self.pixscale
        elif not units.lower().startswith('pix'):
            raise RuntimeError('Unknown unit %s'%units)

        skyannulus = CircularAnnulus(self.skyxy, r_in=r_in, r_out=r_out)
        phot_table = aperture_photometry(
            self.imdat, skyannulus, error=None, mask=None,
            method=u'exact', subpixels=5, unit=None, wcs=None)
        skyvaltot = phot_table['aperture_sum']

        self.skyannpix = [r_in, r_out]
        self.skyvalperpix = skyvaltot / skyannulus.area()

        # TODO: compute the error properly
        self.skyerr = 0.0
        return
예제 #2
0
    def _aper_local_background(self):
        """
        Estimate the local background and error using a circular annulus
        aperture.

        The local backround is the sigma-clipped median value in the
        annulus.  The background error is the standard error of the
        median, sqrt(pi / 2N) * std.
        """
        bkg_aper = CircularAnnulus(
            self.xypos, self.aperture_params['bkg_aperture_inner_radius'],
            self.aperture_params['bkg_aperture_outer_radius'])
        bkg_aper_masks = bkg_aper.to_mask(method='center')
        sigclip = SigmaClip(sigma=3)

        nvalues = []
        bkg_median = []
        bkg_std = []
        for mask in bkg_aper_masks:
            bkg_data = mask.multiply(self.model.data.value)
            bkg_data_1d = bkg_data[mask.data > 0]
            values = sigclip(bkg_data_1d, masked=False)
            nvalues.append(values.size)
            bkg_median.append(np.median(values))
            bkg_std.append(np.std(values))

        nvalues = np.array(nvalues)
        bkg_median = np.array(bkg_median)
        # standard error of the median
        bkg_median_err = np.sqrt(np.pi / (2. * nvalues)) * np.array(bkg_std)

        bkg_median <<= self.model.data.unit
        bkg_median_err <<= self.model.data.unit

        return bkg_median, bkg_median_err
예제 #3
0
def first_cc_val_neg(param, *args):

    center_x, center_y = param
    data = args[0]
    radius_size = args[1]
    ones = np.array([[1] * 600] * 600)

    center_ap = CircularAperture([center_x, center_y], radius_size)
    center_area = center_ap.area
    center_mask = center_ap.to_mask(method='exact')
    center_data = center_mask.multiply(data)
    center_weights = center_mask.multiply(ones)
    center_std = twoD_weighted_std(center_data, center_weights)
    center_val = (np.sum(center_data)) / center_area + 5 * center_std

    first_ap = CircularAnnulus([center_x, center_y],
                               r_in=radius_size,
                               r_out=2 * radius_size)
    first_area = first_ap.area
    first_mask = first_ap.to_mask(method='exact')
    first_data = first_mask.multiply(data)
    first_weights = first_mask.multiply(ones)
    first_std = twoD_weighted_std(first_data, first_weights)
    first_val = (np.sum(first_data)) / first_area + 5 * first_std

    result = (-2.5 * math.log(first_val / center_val, 10))

    return -1 * (result)
예제 #4
0
def redoAperturePhotometry(catalog, imagedata, aperture, annulus_inner,
                           annulus_outer):
    """ Recalculate the FLUX column off a fits / BANZAI CAT extension based on operature photometry. """
    _logger.info("redoing aperture photometry")
    positions = [(catalog['x'][ii], catalog['y'][ii])
                 for ii in range(len(catalog['x']))]

    apertures = CircularAperture(positions, r=aperture)
    sky_apertures = CircularAnnulus(positions,
                                    r_in=annulus_inner,
                                    r_out=annulus_outer)
    sky_apertures_masks = sky_apertures.to_mask(method='center')
    bkg_median = []
    for mask in sky_apertures_masks:
        annulus_data = mask.multiply(imagedata)
        annulus_data_1d = annulus_data[mask.data > 0]
        _, median_sigclip, _ = sigma_clipped_stats(annulus_data_1d)
        bkg_median.append(median_sigclip)
    bkg_median = np.array(bkg_median)

    phottable = aperture_photometry(imagedata, [apertures, sky_apertures])

    # plt.plot (phottable['aperture_sum_1'] / sky_apertures.area, phottable['aperture_sum_1'] / sky_apertures.area - bkg_median,'.')
    # plt.savefig ('sky.png')

    newflux = phottable['aperture_sum_0'] - bkg_median * apertures.area

    # oldmag = -2.5 * np.log10(catalog['FLUX'])
    # newmag = -2.5 * np.log10 (newflux)
    # _logger.info ( newmag - oldmag)
    # plt.plot (newmag, newmag - oldmag, '.')
    # plt.savefig("Comparison.png")

    catalog['FLUX'] = newflux
예제 #5
0
def aper_phot(image, mask, xc, yc, radii, rsky, debug):

    positions = [(xc, yc)]

    # Define apertures
    apertures = [CircularAperture(positions, r=r) for r in radii]
    if (debug == 1):
        #        print("line ", lineno()," apertures  : ", apertures)
        print("line ", lineno(), " aper_phot: positions: ", positions)
        print("line ", lineno(), " aper_phot: sky aperture ", rsky)
#        for rr in range(0,len(radii)):
#            print("line ", lineno(), " apertures[rr].r, apertures[rr].area :", apertures[rr].r, apertures[rr].area )

# Background, masking bad pixels
    annulus_aperture = CircularAnnulus(positions, r_in=rsky[0], r_out=rsky[1])
    annulus_masks = annulus_aperture.to_mask(method='center')
    bkg_median = []
    for anm in annulus_masks:
        annulus_data = anm.multiply(image)
        annulus_data_1d = annulus_data[anm.data > 0]
        if (debug == 1):
            print("line ", lineno(), " aper_phot: annulus_data_1d.shape ",
                  annulus_data_1d.shape)

        # Remove NaNs, Infs
        annulus_data_1d = annulus_data_1d[np.isfinite(annulus_data_1d)]
        _, median_sigclip, _ = sigma_clipped_stats(annulus_data_1d)
        bkg_median.append(median_sigclip)
        if (debug == 1):
            print("line ", lineno(), " aper_phot: annulus_data_1d.shape ",
                  annulus_data_1d.shape)
            print("line ", lineno(), " aper_phot: median sigclip",
                  median_sigclip)
    if (debug == 1):
        print("line ", lineno(), " aper_phot: bkg_median ", bkg_median)

    phot_table = aperture_photometry(image, apertures, mask=mask)
    #
    junk = []
    area_list = []
    n = -1
    for index in phot_table.colnames:
        if ('aperture_sum' in index):
            n = n + 1
            array = phot_table[index].data[0]
            flux = array.tolist()
            bkg = apertures[n].area * bkg_median[0]
            junk.append(flux - bkg)
            area_list.append(apertures[n].area)
    apflux = np.array(junk)
    area = np.array(area_list)
    #    (diff, encircled)  = differential(apflux,area,True,False)
    return apflux, area
예제 #6
0
def get_one_contrast_and_SN(data, positions, fwhm, fwhm_flux):
    '''
    Args:
        path : a string. The path of repository where the files are.
        positions : a list of tuple (x,y). The coordinates of companions.
    Return:
        flux : a np.array, 1 dimension. Store the list of each companion's flux.
        SN : a np.array, 1 dimension. Store the list of each companion's Signal to Noise ratio.
    '''

    # flux
    aperture = CircularAperture(positions, r=2)
    annulus = CircularAnnulus(positions, r_in=4, r_out=6)

    # flux
    flux_companion = aperture_photometry(data, [aperture, annulus])
    flux_companion['aperture_sum_0', 'aperture_sum_1'].info.format = '%.8g'
    flux = (flux_companion['aperture_sum_0'] / aperture.area) / fwhm_flux

    # SN
    ds9 = vip.Ds9Window()
    ds9.display(data)
    SN = vip.metrics.snr(data, source_xy=positions[0], fwhm=fwhm, plot=True)

    return flux[0], SN
예제 #7
0
def allreg_to_aperture(region):
    """Convert region object to aperture object."""

    region_type = type(region).__name__
    if "Pixel" in region_type:
        source_center = (region.center.x, region.center.y)
        if region_type == 'CirclePixelRegion':
            return CircularAperture(source_center, r=region.radius)
        elif region_type == "CircleAnnulusPixelRegion":
            return CircularAnnulus(source_center,
                                   r_in=region.inner_radius,
                                   r_out=region.outer_radius)
        elif region_type == "EllipsePixelRegion":
            # to be tested
            return EllipticalAperture(source_center,
                                      a=region.width,
                                      b=region.height,
                                      angle=region.angle)
    elif "Sky" in region_type:
        center = region.center.fk5
        if region_type == "CircleSkyRegion":
            return SkyCircularAperture(center, r=region.radius)
        elif region_type == "EllipseSkyRegion":
            return SkyEllipticalAperture(center,
                                         a=region.width / 2,
                                         b=region.height / 2,
                                         angle=region.angle)
        elif region_type == "CircleAnnulusSkyRegion":
            return SkyCircularAnnulus(center,
                                      r_in=region.inner_radius,
                                      r_out=region.outer_radius)
    else:
        print("Error region not implemented")
        return None
예제 #8
0
 def sky(self,method='sep',rin=None,rout=None):
     """ (Re)calculate the sky."""
     # Remove the current best-fit model
     resid = self.image.data-self.modelim  # remove model
     # SEP smoothly varying background
     if method=='sep':
         bw = np.maximum(int(self.nx/10),64)
         bh = np.maximum(int(self.ny/10),64)
         bkg = sep.Background(resid, mask=None, bw=bw, bh=bh, fw=3, fh=3)
         self.skyim = bkg.back()
         # Calculate sky value for each star
         #  use center position
         self.starsky[:] = self.skyim[np.round(self.starycen).astype(int),np.round(self.starxcen).astype(int)]
     # Annulus aperture
     elif method=='annulus':
         if rin is None:
             rin = self.psf.fwhm()*1.5
         if rout is None:
             rout = self.psf.fwhm()*2.5
         positions = list(zip(self.starxcen,self.starycen))
         annulus = CircularAnnulus(positions,r_in=rin,r_out=rout)
         for i in range(self.nstars):
             annulus_mask = annulus[i].to_mask(method='center')
             annulus_data = annulus_mask.multiply(resid,fill_value=np.nan)
             data = annulus_data[(annulus_mask.data>0) & np.isfinite(annulus_data)]
             mean_sigclip, median_sigclip, _ = sigma_clipped_stats(data,stdfunc=dln.mad)
             self.starsky[i] = mean_sigclip
         if hasattr(self,'skyim') is False:
             self.skyim = np.zeros(self.image.shape,float)
         if self.skyim is None:
             self.skyim = np.zeros(self.image.shape,float)
         self.skyim += np.median(self.starsky)
     else:
         raise ValueError("Sky method "+method+" not supported")
def get_contrast_and_SN(res_fake, res_real, positions, fwhm_for_snr, fwhm_flux,
                        r_aperture, r_in_annulus, r_out_annulus):
    '''
    Args:
        res_fake : a 2D np.array. The path of repository where the files are.
        res_real : a 2D np.array. The path of another repository where the files are, for calculating snr.
        positions : a list of tuple (x,y). The coordinates of companions.
        fwhm : a float. fwhm's diameter.
        fwhm_flux : a float. The flux of fwhm.
    Return:
        contrast : a np.array, 1 dimension. Store the list of each companion's flux.
        SN : a np.array, 1 dimension. Store the list of each companion's Signal to Noise ratio.
    '''

    aperture = CircularAperture(positions, r=r_aperture)
    annulus = CircularAnnulus(positions,
                              r_in=r_in_annulus,
                              r_out=r_out_annulus)

    # contrast
    flux_companion = aperture_photometry(res_fake, [aperture, annulus])
    flux_companion['aperture_sum_0', 'aperture_sum_1'].info.format = '%.8g'
    flux = flux_companion['aperture_sum_0']
    contrast = (flux_companion['aperture_sum_0']) / fwhm_flux

    # SN
    SN = vip.metrics.snr(array=res_fake,
                         source_xy=positions,
                         fwhm=fwhm_for_snr,
                         plot=False,
                         array2=res_real,
                         use2alone=True)

    return contrast.data[0], SN, flux.data[0]
예제 #10
0
def estimate_all_backgrounds(xs, ys, r_in, r_out, data, stat='aperture_mode'):
    """
    Compute sky values around (xs, ys) in data with various parameters

    See photometry_tools.aperture_stats_tbl for more details.
    """
    ans = CircularAnnulus(positions=zip(xs, ys), r_in=r_in, r_out=r_out)
    bg_ests = aperture_stats_tbl(apertures=ans, data=data, sigma_clip=True)
    return np.array(bg_ests[stat])
예제 #11
0
def get_contrast_and_SN(path, positions, fwhm, fwhm_flux, path_real):
    '''
    Args:
        path : a string. The path of repository where the files are.
        positions : a list of tuple (x,y). The coordinates of companions.
        fwhm : a float. fwhm's diameter.
        fwhm_flux : a float. The flux of fwhm.
        path_real : a string. The path of another repository where the files are, for calculating snr.
    Return:
        contrast : a np.array, 1 dimension. Store the list of each companion's flux.
        SN : a np.array, 1 dimension. Store the list of each companion's Signal to Noise ratio.
    '''
    files = os.listdir(path)
    files.sort()
    
    files_real = os.listdir(path_real)
    files_real.sort()
    l = len(files)
    

    flux = np.zeros(l)
    # contrast
    contrast = np.zeros(l)
    aperture = CircularAperture(positions, r=2)
    annulus = CircularAnnulus(positions, r_in=4, r_out=6)
 
    # SN
    SN = np.zeros(l)

    for i in range(l):
        file = path+'/'+files[i]
        print("file",i,"=", file)
        data = vip.fits.open_fits(file)
        
        # contrast
        flux_companion = aperture_photometry(data, [aperture, annulus])
        flux_companion['aperture_sum_0','aperture_sum_1'].info.format = '%.8g'
        #bkg_mean = flux_companion['aperture_sum_1']/annulus.area
        #bkg_sum_in_companion = bkg_mean * aperture.area
        flux[i] = flux_companion['aperture_sum_0'] 
        contrast[i] = (flux_companion['aperture_sum_0']/aperture.area)/fwhm_flux

        # SN
        lets_plot = False
        if i==2:
            lets_plot = True
            #ds9.display(data)
        file_real = path_real+'/'+files_real[i]
        print("array2 at ",i," =", file_real)
        data2 = vip.fits.open_fits(file_real)
        SN[i] = vip.metrics.snr(array=data, source_xy=positions, fwhm=fwhm, plot=lets_plot, array2 = data2, use2alone=True)
        
    return contrast, SN
예제 #12
0
    def _aper_local_background(self):
        """
        Estimate the local background and error using a circular annulus
        aperture.

        The local background is the sigma-clipped median value in the
        annulus.  The background error is the standard error of the
        median, sqrt(pi / 2N) * std.
        """
        bkg_aper = CircularAnnulus(
            self._xypos_finite,
            self.aperture_params['bkg_aperture_inner_radius'],
            self.aperture_params['bkg_aperture_outer_radius'])
        bkg_aper_masks = bkg_aper.to_mask(method='center')
        sigclip = SigmaClip(sigma=3.)

        with warnings.catch_warnings():
            warnings.simplefilter('ignore', category=RuntimeWarning)
            warnings.simplefilter('ignore', category=AstropyUserWarning)

            nvalues = []
            bkg_median = []
            bkg_std = []
            for mask in bkg_aper_masks:
                bkg_data = mask.get_values(self.model.data.value)
                values = sigclip(bkg_data, masked=False)
                nvalues.append(values.size)
                bkg_median.append(np.median(values))
                bkg_std.append(np.std(values))

            nvalues = np.array(nvalues)
            bkg_median = np.array(bkg_median)
            # standard error of the median
            bkg_median_err = (np.sqrt(np.pi / (2. * nvalues)) *
                              np.array(bkg_std))

        bkg_median <<= self.model.data.unit
        bkg_median_err <<= self.model.data.unit

        return bkg_median, bkg_median_err
예제 #13
0
def region_to_aperture(region, wcs=None):
    """Convert region object to photutils.aperture.aperture_photometry object. The wcs object is needed only if the input regions are in sky coordinates.
    Parameters
    ----------
    region: regions.Region
        Output of read_ds9 method or str
    wcs: astropy.wcs.WCS
        A world coordinate system if the region in sky coordinates IS needed to convert it to pixels.
    """

    if type(region) == str:
        region = read_ds9(region)[0]
    print(region)
    region_type = type(region).__name__
    if "Pixel" in region_type:
        source_center = (region.center.x, region.center.y)
        if region_type == 'CirclePixelRegion':
            return CircularAperture(source_center, r=region.radius)
        elif region_type == "CircleAnnulusPixelRegion":
            return CircularAnnulus(source_center,
                                   r_in=region.inner_radius,
                                   r_out=region.outer_radius)
        elif region_type == "EllipsePixelRegion":
            # to be tested
            return EllipticalAperture(source_center,
                                      a=region.width,
                                      b=region.height,
                                      theta=region.angle)
    elif "Sky" in region_type:
        if wcs is None:
            print("Error, cannot obtain aperture without a wcs.")
            return None
        center = region.center.fk5
        if region_type == "CircleSkyRegion":
            return SkyCircularAperture(center, r=region.radius).to_pixel(wcs)
        elif region_type == "CircleAnnulusSkyRegion":
            print("Region %s not implemented")
        elif region_type == "EllipseSkyRegion":
            return SkyEllipticalAperture(center,
                                         a=region.width,
                                         b=region.height,
                                         theta=region.angle).to_pixel(wcs)
        elif region_type == "CircleAnnulusSkyRegion":
            return SkyCircularAnnulus(center,
                                      r_in=region.inner_radius,
                                      r_out=region.outer_radius).to_pixel(wcs)
    else:
        print("Error region not implemented")
        return None
예제 #14
0
def get_SN(path, positions, fwhm):
    '''
    Args:
        path : a string. The path of repository where the files are.
        positions : a list of tuple (x,y). The coordinates of companions.
    Return:
        flux : a np.array, 1 dimension. Store the list of each companion's flux.
        SN : a np.array, 1 dimension. Store the list of each companion's Signal to Noise ratio.
    '''
    files = os.listdir(path)
    files.sort()
    l = len(files)

    # flux
    flux = np.zeros(l)
    aperture = CircularAperture(positions, r=2)
    annulus = CircularAnnulus(positions, r_in=4, r_out=6)

    # SN
    SN = np.zeros(l)

    for i in range(l):
        file = path + '/' + files[i]
        print("file", i, "=", file)
        data = vip.fits.open_fits(file)

        # flux
        flux_companion = aperture_photometry(data, [aperture, annulus])
        flux_companion['aperture_sum_0', 'aperture_sum_1'].info.format = '%.8g'
        #bkg_mean = flux_companion['aperture_sum_1']/annulus.area
        #bkg_sum_in_companion = bkg_mean * aperture.area
        #flux[i] = flux_companion['aperture_sum_0'] - bkg_sum_in_companion
        flux[i] = (flux_companion['aperture_sum_0'] / aperture.area)

        # SN
        lets_plot = False
        if i == 2:
            lets_plot = True
            #ds9.display(data)
        SN[i] = vip.metrics.snr(data,
                                source_xy=positions[0],
                                fwhm=fwhm,
                                plot=lets_plot)

    return flux, SN
def get_contrast_and_SN_only_real(res_real, positions, fwhm_for_snr, psf,
                                  r_aperture, r_in_annulus, r_out_annulus):
    '''
    Args:
        res_real : a 2D np.array. The path of another repository where the files are, for calculating snr.
        positions : a list of tuple (x,y). The coordinates of companions.
        psf : a 2D np.array. The image of flux.
        fwhm_flux : a float. The flux of fwhm.
        r_aperture, r_in_annulus, r_out_annulus : see args.
    Return:
        contrast : a np.array, 1 dimension. Store the list of each companion's flux.
        SN : a np.array, 1 dimension. Store the list of each companion's Signal to Noise ratio.
    '''

    aperture = CircularAperture(positions, r=r_aperture)
    annulus = CircularAnnulus(positions,
                              r_in=r_in_annulus,
                              r_out=r_out_annulus)

    # contrast
    flux_companion = aperture_photometry(res_real, [aperture, annulus])
    flux_companion['aperture_sum_0', 'aperture_sum_1'].info.format = '%.8g'
    flux = flux_companion['aperture_sum_0']

    x, y = psf.shape
    aperture_psf = CircularAperture((x // 2, y // 2), r=r_aperture)
    flux_psf = aperture_photometry(psf, aperture_psf)
    flux_psf['aperture_sum'].info.format = '%.8g'

    contrast = (flux_companion['aperture_sum_0']) / flux_psf['aperture_sum']

    # SN
    SN = vip.metrics.snr(array=res_real,
                         source_xy=positions,
                         fwhm=fwhm_for_snr,
                         plot=False)

    return contrast.data[0], SN, flux.data[0]
print("psfn =", psfn.shape, "psfn.ndim =", psfn.ndim)

if nb_wl > 1:
    fwhm_bis = get_fwhm_from_psf(psf[1])
    psfn_bis = vip.metrics.normalize_psf(psf[1], fwhm_bis, size=17)
    print("psfn =", psfn_bis.shape, "psfn.ndim =", psfn_bis.ndim)

# pxscale of IRDIS
pxscale = get_pxscale()

# get flux level
psf_nx, psf_ny = psf[wl_final].shape
position = (psf_nx // 2, psf_ny // 2)

aperture = CircularAperture(position, r=(diameter / 2))
annulus = CircularAnnulus(position, r_in=diameter, r_out=diameter * (3 / 2))
flux_psf = aperture_photometry(psf[wl_final], [aperture, annulus])
flux_psf['aperture_sum_0', 'aperture_sum_1'].info.format = '%.8g'
flux_level = flux_psf['aperture_sum_0'][0] * contrast

print(">> flux of psf in the same aperture is:", flux_psf['aperture_sum_0'][0],
      "contrast is:", contrast)
print(">> flux_level =", flux_level)

################################
# Step-3 do the fake injection #
################################

# use vip to inject a fake companion
science_cube_fake_comp = np.zeros((2, nb_science_frames, nx, ny))
science_cube_fake_comp[wl_final] = vip.metrics.cube_inject_companions(
예제 #17
0
print('\nPrint source locations:')
sources['id', 'xcentroid',
        'ycentroid'].pprint()  #print out positions of sources
print('\n')

#%% perform aperture photometry
# extract source postions from table; transpose is needed for proper orientation
positions = np.transpose((sources['xcentroid'], sources['ycentroid']))
# define the aperture
r_a = 3 * seeing
apertures = CircularAperture(positions, r=r_a)
# define the annulus
r_in = r_a + 3
r_out = r_in + 15
annulus = CircularAnnulus(positions, r_in=r_in, r_out=r_out)

# plot image with apertures
y_or_n = input('Do you wish to display the image and appertures? ')
if (y_or_n[0] == 'y') or (y_or_n[0] == 'Y'):
    plt.figure(1)
    plt.clf()

    # label the sources
    mylabels = sources['id']
    for idx, txt in enumerate(mylabels):
        plt.annotate(txt, (positions[idx, 0], positions[idx, 1]))

    plt.imshow(np.log(imdata), cmap='Greys')
    apertures.plot(color='red', lw=1.5, alpha=0.5)
    annulus.plot(color='green', lw=1.5, alpha=0.5)
예제 #18
0
def extract_ifu(input_model, source_type, extract_params):
    """This function does the extraction.

    Parameters
    ----------
    input_model : IFUCubeModel
        The input model.

    source_type : string
        "POINT" or "EXTENDED"

    extract_params : dict
        The extraction parameters for aperture photometry.

    Returns
    -------
    ra, dec : float
        ra and dec are the right ascension and declination respectively
        at the nominal center of the image.

    wavelength : ndarray, 1-D
        The wavelength in micrometers at each plane of the IFU cube.

    temp_flux : ndarray, 1-D
        The sum of the data values in the extraction aperture minus the
        sum of the data values in the background region (scaled by the
        ratio of areas), for each plane.
        The data values are in units of surface brightness, so this value
        isn't really the flux, it's an intermediate value.  Dividing by
        `npixels` (to compute the average) will give the value for the
        `surf_bright` (surface brightness) column, and multiplying by
        the solid angle of a pixel will give the flux for a point source.

    background : ndarray, 1-D
        For point source data, the background array is the count rate that was subtracted
        from the total source data values to get `temp_flux`. This background is determined
        for annulus region. For extended source data, the background array is the sigma clipped
        extracted region.

    npixels : ndarray, 1-D, float64
        For each slice, this is the number of pixels that were added
        together to get `temp_flux`.

    dq : ndarray, 1-D, uint32
        The data quality array.

    npixels_bkg : ndarray, 1-D, float64
        For each slice, for point source data  this is the number of pixels that were added
        together to get `temp_flux` for an annulus region or for extended source
        data it is the number of pixels used to determine the background

    radius_match : ndarray,1-D, float64
        The size of the extract radius in pixels used at each wavelength of the IFU cube

    x_center, y_center : float
        The x and y center of the extraction region
    """

    data = input_model.data
    weightmap = input_model.weightmap

    shape = data.shape
    if len(shape) != 3:
        log.error("Expected a 3-D IFU cube; dimension is %d.", len(shape))
        raise RuntimeError("The IFU cube should be 3-D.")

    # We need to allocate temp_flux, background, npixels, and dq arrays
    # no matter what.  We may need to divide by npixels, so the default
    # is 1 rather than 0.
    temp_flux = np.zeros(shape[0], dtype=np.float64)
    background = np.zeros(shape[0], dtype=np.float64)
    npixels = np.ones(shape[0], dtype=np.float64)
    npixels_bkg = np.ones(shape[0], dtype=np.float64)

    dq = np.zeros(shape[0], dtype=np.uint32)

    # For an extended target, the entire aperture will be extracted, so
    # it makes no sense to shift the extraction location.
    if source_type != "EXTENDED":
        ra_targ = input_model.meta.target.ra
        dec_targ = input_model.meta.target.dec
        locn = locn_from_wcs(input_model, ra_targ, dec_targ)

        if locn is None or np.isnan(locn[0]):
            log.warning("Couldn't determine pixel location from WCS, so "
                        "source offset correction will not be applied.")

            x_center = float(shape[-1]) / 2.
            y_center = float(shape[-2]) / 2.

        else:
            (x_center, y_center) = locn
            log.info(
                "Using x_center = %g, y_center = %g, based on "
                "TARG_RA and TARG_DEC.", x_center, y_center)

    method = extract_params['method']
    subpixels = extract_params['subpixels']
    subtract_background = extract_params['subtract_background']

    radius = None
    inner_bkg = None
    outer_bkg = None
    width = None
    height = None
    theta = None
    # pull wavelength plane out of input data.
    # using extract 1d wavelength, interpolate the radius, inner_bkg, outer_bkg to match input wavelength

    # find the wavelength array of the IFU cube
    x0 = float(shape[2]) / 2.
    y0 = float(shape[1]) / 2.
    (ra, dec, wavelength) = get_coordinates(input_model, x0, y0)

    # interpolate the extraction parameters to the wavelength of the IFU cube
    radius_match = None
    if source_type == 'POINT':
        wave_extract = extract_params['wavelength'].flatten()
        inner_bkg = extract_params['inner_bkg'].flatten()
        outer_bkg = extract_params['outer_bkg'].flatten()
        radius = extract_params['radius'].flatten()

        frad = interp1d(wave_extract,
                        radius,
                        bounds_error=False,
                        fill_value="extrapolate")
        radius_match = frad(wavelength)
        # radius_match is in arc seconds - need to convert to pixels
        # the spatial scale is the same for all wavelengths do we only need to call compute_scale once.

        if locn is None:
            locn_use = (input_model.meta.wcsinfo.crval1,
                        input_model.meta.wcsinfo.crval2, wavelength[0])
        else:
            locn_use = (ra_targ, dec_targ, wavelength[0])

        scale_degrees = compute_scale(
            input_model.meta.wcs,
            locn_use,
            disp_axis=input_model.meta.wcsinfo.dispersion_direction)

        scale_arcsec = scale_degrees * 3600.00
        radius_match /= scale_arcsec

        finner = interp1d(wave_extract,
                          inner_bkg,
                          bounds_error=False,
                          fill_value="extrapolate")
        inner_bkg_match = finner(wavelength) / scale_arcsec

        fouter = interp1d(wave_extract,
                          outer_bkg,
                          bounds_error=False,
                          fill_value="extrapolate")
        outer_bkg_match = fouter(wavelength) / scale_arcsec

    elif source_type == 'EXTENDED':
        # Ignore any input parameters, and extract the whole image.
        width = float(shape[-1])
        height = float(shape[-2])
        x_center = width / 2. - 0.5
        y_center = height / 2. - 0.5
        theta = 0.
        subtract_background = False
        bkg_sigma_clip = extract_params['bkg_sigma_clip']

    log.debug("IFU 1-D extraction parameters:")
    log.debug("  x_center = %s", str(x_center))
    log.debug("  y_center = %s", str(y_center))
    if source_type == 'POINT':
        log.debug("  method = %s", method)
        if method == "subpixel":
            log.debug("  subpixels = %s", str(subpixels))
    else:
        log.debug("  width = %s", str(width))
        log.debug("  height = %s", str(height))
        log.debug("  theta = %s degrees", str(theta))
        log.debug("  subtract_background = %s", str(subtract_background))
        log.debug("  sigma clip value for background = %s",
                  str(bkg_sigma_clip))
        log.debug("  method = %s", method)
        if method == "subpixel":
            log.debug("  subpixels = %s", str(subpixels))

    position = (x_center, y_center)

    # get aperture for extended it will not change with wavelength
    if source_type == 'EXTENDED':
        aperture = RectangularAperture(position, width, height, theta)
        annulus = None

    for k in range(shape[0]):  # looping over wavelength
        inner_bkg = None
        outer_bkg = None

        if source_type == 'POINT':
            radius = radius_match[
                k]  # this radius has been converted to pixels
            aperture = CircularAperture(position, r=radius)
            inner_bkg = inner_bkg_match[k]
            outer_bkg = outer_bkg_match[k]
            if inner_bkg <= 0. or outer_bkg <= 0. or inner_bkg >= outer_bkg:
                log.debug("Turning background subtraction off, due to "
                          "the values of inner_bkg and outer_bkg.")
                subtract_background = False

        if subtract_background and inner_bkg is not None and outer_bkg is not None:
            annulus = CircularAnnulus(position,
                                      r_in=inner_bkg,
                                      r_out=outer_bkg)
        else:
            annulus = None

        subtract_background_plane = subtract_background
        # Compute the area of the aperture and possibly also of the annulus.
        # for each wavelength bin (taking into account empty spaxels)
        normalization = 1.
        temp_weightmap = weightmap[k, :, :]
        temp_weightmap[temp_weightmap > 1] = 1
        aperture_area = 0
        annulus_area = 0

        # aperture_photometry - using weight map
        phot_table = aperture_photometry(temp_weightmap,
                                         aperture,
                                         method=method,
                                         subpixels=subpixels)

        aperture_area = float(phot_table['aperture_sum'][0])
        log.debug("aperture.area = %g; aperture_area = %g", aperture.area,
                  aperture_area)

        if (aperture_area == 0 and aperture.area > 0):
            aperture_area = aperture.area

        if subtract_background and annulus is not None:
            # Compute the area of the annulus.
            phot_table = aperture_photometry(temp_weightmap,
                                             annulus,
                                             method=method,
                                             subpixels=subpixels)
            annulus_area = float(phot_table['aperture_sum'][0])
            log.debug("annulus.area = %g; annulus_area = %g", annulus.area,
                      annulus_area)

            if (annulus_area == 0 and annulus.area > 0):
                annulus_area = annulus.area

            if annulus_area > 0.:
                normalization = aperture_area / annulus_area
            else:
                log.warning("Background annulus has no area, so background "
                            f"subtraction will be turned off. {k}")
                subtract_background_plane = False

        npixels[k] = aperture_area
        npixels_bkg[k] = 0.0
        if annulus is not None:
            npixels_bkg[k] = annulus_area
        # aperture_photometry - using data

        phot_table = aperture_photometry(data[k, :, :],
                                         aperture,
                                         method=method,
                                         subpixels=subpixels)
        temp_flux[k] = float(phot_table['aperture_sum'][0])

        # Point source type of data with defined annulus size
        if subtract_background_plane:
            bkg_table = aperture_photometry(data[k, :, :],
                                            annulus,
                                            method=method,
                                            subpixels=subpixels)
            background[k] = float(bkg_table['aperture_sum'][0])
            temp_flux[k] = temp_flux[k] - background[k] * normalization

        # Extended source data - background determined from sigma clipping
        if source_type == 'EXTENDED':
            bkg_data = data[k, :, :]
            # pull out the data with coverage in IFU cube. We do not want to use
            # the edge data that is zero to define the statistics on clipping
            bkg_stat_data = bkg_data[temp_weightmap == 1]

            bkg_mean, _, bkg_stddev = stats.sigma_clipped_stats(
                bkg_stat_data, sigma=bkg_sigma_clip, maxiters=5)
            low = bkg_mean - bkg_sigma_clip * bkg_stddev
            high = bkg_mean + bkg_sigma_clip * bkg_stddev

            # set up the mask to flag data that should not be used in aperture photometry
            maskclip = np.logical_or(bkg_data < low, bkg_data > high)

            bkg_table = aperture_photometry(bkg_data,
                                            aperture,
                                            mask=maskclip,
                                            method=method,
                                            subpixels=subpixels)
            background[k] = float(bkg_table['aperture_sum'][0])
            phot_table = aperture_photometry(temp_weightmap,
                                             aperture,
                                             mask=maskclip,
                                             method=method,
                                             subpixels=subpixels)
            npixels_bkg[k] = float(phot_table['aperture_sum'][0])

        del temp_weightmap
        # done looping over wavelength bins
    # Check for NaNs in the wavelength array, flag them in the dq array,
    # and truncate the arrays if NaNs are found at endpoints (unless the
    # entire array is NaN).
    (wavelength, temp_flux, background, npixels, dq, npixels_bkg) = \
        nans_in_wavelength(wavelength, temp_flux, background, npixels, dq, npixels_bkg)

    return (ra, dec, wavelength, temp_flux, background, npixels, dq,
            npixels_bkg, radius_match, x_center, y_center)
예제 #19
0
def ConCur(star_data,
           radius_size=1,
           center=None,
           background_method='astropy',
           find_hots=False,
           find_center=False):

    data = star_data.copy()

    background_mean, background_std = background_calc(data, background_method)

    x, y = np.indices((data.shape))

    if not center:
        center = np.array([(x.max() - x.min()) / 2.0,
                           (y.max() - y.min()) / 2.0])

    if find_hots == True:
        hots = hot_pixels(data, center, background_mean, background_std)

    if find_center == True:
        center_vals = find_best_center(data, radius_size, center)
        center = np.array([center_vals[0], center_vals[1]])

    radii = np.sqrt((x - center[0])**2 + (y - center[1])**2)
    radii = radii.astype(np.int)

    ones = np.array([[1] * len(data)] * len(data[0]))

    number_of_a = radii.max() / radius_size

    center_ap = CircularAperture([center[0], center[1]], radius_size)

    all_apers, all_apers_areas, all_masks = [center_ap], [center_ap.area], [
        center_ap.to_mask(method='exact')
    ]

    all_data, all_weights = [all_masks[0].multiply(data)
                             ], [all_masks[0].multiply(ones)]

    all_stds = [twoD_weighted_std(all_data[0], all_weights[0])]

    for j in range(int(number_of_a)):
        aper = CircularAnnulus([center[0], center[1]],
                               r_in=(j * radius_size + radius_size),
                               r_out=(j * radius_size + 2 * radius_size))
        all_apers.append(aper)
        all_apers_areas.append(aper.area)
        mask = aper.to_mask(method='exact')
        all_masks.append(mask)
        mask_data = mask.multiply(data)
        mask_weight = mask.multiply(ones)
        all_data.append(mask_data)
        all_weights.append(mask_weight)
        all_stds.append(twoD_weighted_std(mask_data, mask_weight))
    phot_table = aperture_photometry(data, all_apers)

    center_val = np.sum(all_data[0]) / all_apers_areas[0] + 5 * all_stds[0]

    delta_mags = []
    for i in range(len(phot_table[0]) - 3):
        try:
            delta_mags.append(-2.5 * math.log((np.sum(all_data[i])/all_apers_areas[i] + \
                                               5*all_stds[i])/center_val,10))
        except ValueError:
            print('annulus',i, 'relative flux equal to', (np.sum(all_data[i])/all_apers_areas[i] + \
                                               5*all_stds[i])/center_val, '...it is not included')
            delta_mags.append(np.NaN)

    arc_lengths = []
    for i in range(len(delta_mags)):
        arc_lengths.append(
            (i * 0.033 + 0.033) *
            radius_size)  #make sure center radius size is correct
    arc_lengths = np.array(arc_lengths)
    lim_arc_lengths = arc_lengths[arc_lengths < 10]
    delta_mags = delta_mags[:len(lim_arc_lengths)]
    delta_mags = np.array(delta_mags)
    if delta_mags[1] < 0:
        print('Warning: first annulus has negative relative flux of value,',
              '%.5f' % delta_mags[1],
              'consider changing center or radius size')

    return (lim_arc_lengths, delta_mags, all_stds)
예제 #20
0
            handles = (ap_patches[0],ann_patches[0])
            plt.legend(loc=(0.17, 0.05), facecolor='#458989', labelcolor='white', handles=handles, prop={'weight':'bold', 'size':11})
            plt.xlim(100,170)
            plt.ylim(200,256)
            #plt.savefig('./circle_ADI/ADI_32px_'+str(i))
            plt.show()

    return res, SN 

if __name__ == "__main__":

    print("###### Start to process the data ######")
    start_time = datetime.datetime.now() 
    positions = [(126.05284, 249.11)]
    aperture = CircularAperture(positions, r=2)
    annulus = CircularAnnulus(positions, r_in=4, r_out=6)

    # ADI data
    #ADI_res, ADI_SN = get_photometry("./ADI")
    #ADI_res, ADI_SN = get_photometry("./ADI_WITH_MASK")
    #ADI_res_32, ADI_SN_32 = get_photometry("./ADI_WITH_MASK_32")
    #print(ADI_res_32)

    # RDI data 1 target 2 ref stars
    #RDI_res_2_ref, RDI_2_SN = get_photometry("./RDI_ref_2_star")
    #print(RDI_res_2_ref)

    # RDI data 1 target 4 ref stars
    #RDI_res_4_ref, RDI_4_SN = get_photometry("./RDI_ref_4_star")
    #print(RDI_res_4_ref)
예제 #21
0
def tso_aperture_photometry(datamodel, xcenter, ycenter, radius, radius_inner,
                            radius_outer):
    """
    Create a photometric catalog for NIRCam TSO imaging observations.

    Parameters
    ----------
    datamodel : `CubeModel`
        The input `CubeModel` of a NIRCam TSO imaging observation.

    xcenter, ycenter : float
        The ``x`` and ``y`` center of the aperture.

    radius : float
        The radius (in pixels) of the circular aperture.

    radius_inner, radius_outer : float
        The inner and outer radii (in pixels) of the circular-annulus
        aperture, used for local background estimation.

    Returns
    -------
    catalog : `~astropy.table.QTable`
        An astropy QTable (Quantity Table) containing the source
        photometry.
    """

    if not isinstance(datamodel, CubeModel):
        raise ValueError('The input data model must be a CubeModel.')

    # For the SUB64P subarray with the WLP8 pupil, the circular aperture
    # extends beyond the image and the circular annulus does not have any
    # overlap with the image.  In that case, we simply sum all values
    # in the array and skip the background subtraction.
    sub64p_wlp8 = False
    if (datamodel.meta.instrument.pupil == 'WLP8'
            and datamodel.meta.subarray.name == 'SUB64P'):
        sub64p_wlp8 = True

    if not sub64p_wlp8:
        phot_aper = CircularAperture((xcenter, ycenter), r=radius)
        bkg_aper = CircularAnnulus((xcenter, ycenter),
                                   r_in=radius_inner,
                                   r_out=radius_outer)

    # convert the input data and errors from MJy/sr to Jy
    if datamodel.meta.bunit_data != 'MJy/sr':
        raise ValueError('data is expected to be in units of MJy/sr')
    factor = 1.e6 * datamodel.meta.photometry.pixelarea_steradians
    datamodel.data *= factor
    datamodel.err *= factor
    datamodel.meta.bunit_data = 'Jy'
    datamodel.meta.bunit_err = 'Jy'

    aperture_sum = []
    aperture_sum_err = []
    annulus_sum = []
    annulus_sum_err = []

    nimg = datamodel.data.shape[0]

    if sub64p_wlp8:
        info = ('Photometry measured as the sum of all values in the '
                'subarray.  No background subtraction was performed.')

        for i in np.arange(nimg):
            aperture_sum.append(np.sum(datamodel.data[i, :, :]))
            aperture_sum_err.append(np.sqrt(np.sum(datamodel.err[i, :, :]**2)))
    else:
        info = ('Photometry measured in a circular aperture of r={0} '
                'pixels.  Background calculated as the mean in a '
                'circular annulus with r_inner={1} pixels and '
                'r_outer={2} pixels.'.format(radius, radius_inner,
                                             radius_outer))
        for i in np.arange(nimg):
            aper_sum, aper_sum_err = phot_aper.do_photometry(
                datamodel.data[i, :, :], error=datamodel.err[i, :, :])
            ann_sum, ann_sum_err = bkg_aper.do_photometry(
                datamodel.data[i, :, :], error=datamodel.err[i, :, :])

            aperture_sum.append(aper_sum[0])
            aperture_sum_err.append(aper_sum_err[0])
            annulus_sum.append(ann_sum[0])
            annulus_sum_err.append(ann_sum_err[0])

    aperture_sum = np.array(aperture_sum)
    aperture_sum_err = np.array(aperture_sum_err)
    annulus_sum = np.array(annulus_sum)
    annulus_sum_err = np.array(annulus_sum_err)

    # construct metadata for output table
    meta = OrderedDict()
    meta['instrument'] = datamodel.meta.instrument.name
    meta['detector'] = datamodel.meta.instrument.detector
    meta['channel'] = datamodel.meta.instrument.channel
    meta['subarray'] = datamodel.meta.subarray.name
    meta['filter'] = datamodel.meta.instrument.filter
    meta['pupil'] = datamodel.meta.instrument.pupil
    meta['target_name'] = datamodel.meta.target.catalog_name
    meta['xcenter'] = xcenter
    meta['ycenter'] = ycenter
    ra_icrs, dec_icrs = datamodel.meta.wcs(xcenter, ycenter)
    meta['ra_icrs'] = ra_icrs
    meta['dec_icrs'] = dec_icrs
    meta['apertures'] = info

    # initialize the output table
    tbl = QTable(meta=meta)

    # check for the INT_TIMES table extension
    if hasattr(datamodel, 'int_times') and datamodel.int_times is not None:
        nrows = len(datamodel.int_times)
    else:
        nrows = 0
        log.warning("The INT_TIMES table in the input file is missing or "
                    "empty.")

    # load the INT_TIMES table data
    if nrows > 0:
        shape = datamodel.data.shape
        if len(shape) == 2:
            num_integ = 1
        else:  # len(shape) == 3
            num_integ = shape[0]
        int_start = datamodel.meta.exposure.integration_start
        if int_start is None:
            int_start = 1
            log.warning(f"INTSTART not found; assuming a value of {int_start}")

        # Columns of integration numbers & times of integration from the
        # INT_TIMES table.
        int_num = datamodel.int_times['integration_number']
        mid_utc = datamodel.int_times['int_mid_MJD_UTC']
        offset = int_start - int_num[0]  # both are one-indexed
        if offset < 0:
            log.warning("Range of integration numbers in science data extends "
                        "outside the range in INT_TIMES table.")
            log.warning("Can't use INT_TIMES table.")
            del int_num, mid_utc
            nrows = 0  # flag as bad
        else:
            log.debug("Times are from the INT_TIMES table")
            time_arr = mid_utc[offset:offset + num_integ]
            int_times = Time(time_arr, format='mjd', scale='utc')

    # compute integration time stamps on the fly
    if nrows == 0:
        log.debug("Times computed from EXPSTART and EFFINTTM")
        dt = datamodel.meta.exposure.integration_time
        n_dt = (datamodel.meta.exposure.integration_end -
                datamodel.meta.exposure.integration_start + 1)
        dt_arr = (np.arange(1, 1 + n_dt) * dt - (dt / 2.))
        int_dt = TimeDelta(dt_arr, format='sec')
        int_times = (Time(datamodel.meta.exposure.start_time, format='mjd') +
                     int_dt)

    # populate table columns
    unit = u.Unit(datamodel.meta.bunit_data)
    tbl['MJD'] = int_times.mjd
    tbl['aperture_sum'] = aperture_sum << unit
    tbl['aperture_sum_err'] = aperture_sum_err << unit

    if not sub64p_wlp8:
        tbl['annulus_sum'] = annulus_sum << unit
        tbl['annulus_sum_err'] = annulus_sum_err << unit

        annulus_mean = annulus_sum / bkg_aper.area
        annulus_mean_err = annulus_sum_err / bkg_aper.area
        aperture_bkg = annulus_mean * phot_aper.area
        aperture_bkg_err = annulus_mean_err * phot_aper.area

        tbl['annulus_mean'] = annulus_mean << unit
        tbl['annulus_mean_err'] = annulus_mean_err << unit

        tbl['aperture_bkg'] = aperture_bkg << unit
        tbl['aperture_bkg_err'] = aperture_bkg_err << unit

        net_aperture_sum = aperture_sum - aperture_bkg
        net_aperture_sum_err = np.sqrt(aperture_sum_err**2 +
                                       aperture_bkg_err**2)
        tbl['net_aperture_sum'] = net_aperture_sum << unit
        tbl['net_aperture_sum_err'] = net_aperture_sum_err << unit
    else:
        colnames = [
            'annulus_sum', 'annulus_sum_err', 'annulus_mean',
            'annulus_mean_err', 'aperture_bkg', 'aperture_bkg_err'
        ]
        for col in colnames:
            tbl[col] = np.full(nimg, np.nan)

        tbl['net_aperture_sum'] = aperture_sum << unit
        tbl['net_aperture_sum_err'] = aperture_sum_err << unit

    return tbl
예제 #22
0
def quick_sky_circ(ccd, pos, r_in=10, r_out=20):
    """ Estimate sky with crude presets
    """
    from photutils.aperture import CircularAnnulus
    annulus = CircularAnnulus(pos, r_in=r_in, r_out=r_out)
    return sky_fit(ccd, annulus)
예제 #23
0
파일: RDI.py 프로젝트: Na1an/Stage_in_IPAG
        # 3. result of cADI
        data = origin_flux_companion(
            slice_frame(target_frames, len(target_frames[0, 0, 0]), scale),
            read_file(str(sys.argv[2]), "ROTATION"))
        data_bkg_mean = radial_data_mean(data[0])
        c = plt.imshow(data_bkg_mean, interpolation='nearest', origin='lower')
        plt.colorbar(c)
        plt.title('backgraound flux of target science')
        plt.show()

        #hdu = fits.PrimaryHDU(res_cADI)
        #hdu.writeto("./GJ_667C_origin_rotated.fits")
        positions = [(126.05284, 249.11)]
        #positions = [(143.06025, 166.01939)]
        aperture = CircularAperture(positions, r=2)
        annulus = CircularAnnulus(positions, r_in=4, r_out=6)

        #data[0][1:,1:] = data[0][1:,1:] - data_bkg_mean
        flux_companion = aperture_photometry(data[0], [aperture, annulus])
        bkg_mean = flux_companion['aperture_sum_1'] / annulus.area
        bkg_sum_in_companion = bkg_mean * aperture.area

        print(flux_companion)
        print("bkg_mean =", bkg_mean[0], "\naperture.area =", aperture.area,
              "\nannulus.area =", annulus.area)
        print("bkg_sum_in_companion =", bkg_sum_in_companion[0])
        flux_companion_origin = flux_companion[
            'aperture_sum_0'] - bkg_sum_in_companion
        print("flux companion origin =", flux_companion_origin[0])

        norm = simple_norm(data, 'sqrt', percent=99)