class AmplitudeView(MarkerSizeMixin, LassoMixin, ManualClusteringView): """This view displays an amplitude plot for all selected clusters. Constructor ----------- amplitudes : function Maps `cluster_ids` to a list `[Bunch(amplitudes, spike_ids), ...]` for each cluster. Use `cluster_id=None` for background amplitudes. """ _default_position = 'right' # Alpha channel of the markers in the scatter plot. marker_alpha = 1. # Number of bins in the histogram. n_bins = 100 # Alpha channel of the histogram in the background. histogram_alpha = .5 # Quantile used for scaling of the amplitudes (less than 1 to avoid outliers). quantile = .99 # Size of the histogram, between 0 and 1. histogram_scale = .25 default_shortcuts = { 'change_marker_size': 'ctrl+wheel', 'next_amplitude_type': 'a', 'previous_amplitude_type': 'shift+a', 'select_x_dim': 'alt+left click', 'select_y_dim': 'alt+right click', } def __init__(self, amplitudes=None, amplitude_name=None, duration=None): super(AmplitudeView, self).__init__() self.state_attrs += ('amplitude_name',) self.canvas.enable_axes() self.canvas.enable_lasso() # Ensure amplitudes is a dictionary, even if there is a single amplitude. if not isinstance(amplitudes, dict): amplitudes = {'amplitude': amplitudes} assert amplitudes self.amplitudes = amplitudes self.amplitude_names = list(amplitudes.keys()) # Current amplitude type. self.amplitude_name = amplitude_name or self.amplitude_names[0] assert self.amplitude_name in amplitudes self.cluster_ids = () self.duration = duration or 1 # Histogram visual. self.hist_visual = HistogramVisual() self.hist_visual.transforms.add_on_gpu([ Range(NDC, (-1, -1, 1, -1 + 2 * self.histogram_scale)), Rotate('ccw')]) self.canvas.add_visual(self.hist_visual) # Scatter plot. self.visual = ScatterVisual() self.canvas.add_visual(self.visual) # Amplitude name. self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual, exclude_origins=(self.canvas.panzoom,)) def _get_data_bounds(self, bunchs): """Compute the data bounds.""" if not bunchs: # pragma: no cover return (0, 0, self.duration, 1) m = min(np.quantile(bunch.amplitudes, 1 - self.quantile) for bunch in bunchs) m = min(0, m) # ensure ymin <= 0 M = max(np.quantile(bunch.amplitudes, self.quantile) for bunch in bunchs) return (0, m, self.duration, M) def _add_histograms(self, bunchs): # We do this after get_clusters_data because we need x_max. for bunch in bunchs: bunch.histogram = _compute_histogram( bunch.amplitudes, x_min=self.data_bounds[1], x_max=self.data_bounds[3], n_bins=self.n_bins, normalize=False, ignore_zeros=True, ) return bunchs def _plot_cluster(self, bunch): """Make the scatter plot.""" ms = self._marker_size # Histogram in the background. self.hist_visual.add_batch_data( hist=bunch.histogram, ylim=self._ylim, color=add_alpha(bunch.color, self.histogram_alpha)) # Scatter plot. self.visual.add_batch_data( pos=bunch.pos, color=bunch.color, size=ms, data_bounds=self.data_bounds) def _plot_amplitude_name(self): """Show the amplitude name.""" self.text_visual.add_batch_data(pos=[0, 1], anchor=[0, -1], text=self.amplitude_name) def get_clusters_data(self, load_all=None): """Return a list of Bunch instances, with attributes pos and spike_ids.""" if not len(self.cluster_ids): return cluster_ids = list(self.cluster_ids) # Don't need the background when splitting. if not load_all: # Add None cluster which means background spikes. cluster_ids = [None] + cluster_ids bunchs = self.amplitudes[self.amplitude_name](cluster_ids, load_all=load_all) or () # Add a pos attribute in bunchs in addition to x and y. for i, (cluster_id, bunch) in enumerate(zip(cluster_ids, bunchs)): spike_ids = _as_array(bunch.spike_ids) spike_times = _as_array(bunch.spike_times) amplitudes = _as_array(bunch.amplitudes) assert spike_ids.shape == spike_times.shape == amplitudes.shape # Ensure that bunch.pos exists, as it used by the LassoMixin. bunch.pos = np.c_[spike_times, amplitudes] assert bunch.pos.ndim == 2 bunch.cluster_id = cluster_id bunch.color = ( selected_cluster_color(i - 1, self.marker_alpha) # Background amplitude color. if cluster_id is not None else (.5, .5, .5, .5)) return bunchs def plot(self, **kwargs): """Update the view with the current cluster selection.""" bunchs = self.get_clusters_data() if not bunchs: return self.data_bounds = self._get_data_bounds(bunchs) bunchs = self._add_histograms(bunchs) # Use the same scale for all histograms. self._ylim = max(bunch.histogram.max() for bunch in bunchs) if bunchs else 1. self.visual.reset_batch() self.hist_visual.reset_batch() self.text_visual.reset_batch() for bunch in bunchs: self._plot_cluster(bunch) self._plot_amplitude_name() self.canvas.update_visual(self.visual) self.canvas.update_visual(self.hist_visual) self.canvas.update_visual(self.text_visual) self._update_axes() self.canvas.update() def attach(self, gui): """Attach the view to the GUI.""" super(AmplitudeView, self).attach(gui) self.actions.add(self.next_amplitude_type, set_busy=True) self.actions.add(self.previous_amplitude_type, set_busy=True) def _change_amplitude_type(self, dir=+1): i = self.amplitude_names.index(self.amplitude_name) n = len(self.amplitude_names) self.amplitude_name = self.amplitude_names[(i + dir) % n] logger.debug("Switch to amplitude type: %s.", self.amplitude_name) self.plot() def next_amplitude_type(self): """Switch to the next amplitude type.""" self._change_amplitude_type(+1) def previous_amplitude_type(self): """Switch to the previous amplitude type.""" self._change_amplitude_type(-1)
class AmplitudeView(MarkerSizeMixin, LassoMixin, ManualClusteringView): """This view displays an amplitude plot for all selected clusters. Constructor ----------- amplitudes : dict Dictionary `{amplitudes_type: function}`, for different types of amplitudes. Each function maps `cluster_ids` to a list `[Bunch(amplitudes, spike_ids, spike_times), ...]` for each cluster. Use `cluster_id=None` for background amplitudes. """ # Do not show too many clusters. max_n_clusters = 8 _default_position = 'right' # Alpha channel of the markers in the scatter plot. marker_alpha = 1. time_range_color = (1., 1., 0., .25) # Number of bins in the histogram. n_bins = 100 # Alpha channel of the histogram in the background. histogram_alpha = .5 # Quantile used for scaling of the amplitudes (less than 1 to avoid outliers). quantile = .99 # Size of the histogram, between 0 and 1. histogram_scale = .25 default_shortcuts = { 'change_marker_size': 'alt+wheel', 'next_amplitudes_type': 'a', 'previous_amplitudes_type': 'shift+a', 'select_x_dim': 'shift+left click', 'select_y_dim': 'shift+right click', 'select_time': 'alt+click', } def __init__(self, amplitudes=None, amplitudes_type=None, duration=None): super(AmplitudeView, self).__init__() self.state_attrs += ('amplitudes_type', ) self.canvas.enable_axes() self.canvas.enable_lasso() # Ensure amplitudes is a dictionary, even if there is a single amplitude. if not isinstance(amplitudes, dict): amplitudes = {'amplitude': amplitudes} assert amplitudes self.amplitudes = amplitudes # Rotating property amplitudes types. self.amplitudes_types = RotatingProperty() for name, value in self.amplitudes.items(): self.amplitudes_types.add(name, value) # Current amplitudes type. self.amplitudes_types.set(amplitudes_type) assert self.amplitudes_type in self.amplitudes self.cluster_ids = () self.duration = duration or 1. # Histogram visual. self.hist_visual = HistogramVisual() self.hist_visual.transforms.add([ Range(NDC, (-1, -1, 1, -1 + 2 * self.histogram_scale)), Rotate('cw'), Scale((1, -1)), Translate((2.05, 0)), ]) self.canvas.add_visual(self.hist_visual) self.canvas.panzoom.zoom = self.canvas.panzoom._default_zoom = (.75, 1) self.canvas.panzoom.pan = self.canvas.panzoom._default_pan = (-.25, 0) # Yellow vertical bar showing the selected time interval. self.patch_visual = PatchVisual(primitive_type='triangle_fan') self.patch_visual.inserter.insert_vert( ''' const float MIN_INTERVAL_SIZE = 0.01; uniform float u_interval_size; ''', 'header') self.patch_visual.inserter.insert_vert( ''' gl_Position.y = pos_orig.y; // The following is used to ensure that (1) the bar width increases with the zoom level // but also (2) there is a minimum absolute width so that the bar remains visible // at low zoom levels. float w = max(MIN_INTERVAL_SIZE, u_interval_size * u_zoom.x); // HACK: the z coordinate is used to store 0 or 1, depending on whether the current // vertex is on the left or right edge of the bar. gl_Position.x += w * (-1 + 2 * int(a_position.z == 0)); ''', 'after_transforms') self.canvas.add_visual(self.patch_visual) # Scatter plot. self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.canvas.panzoom.set_constrain_bounds((-2, -2, +2, +2)) def _get_data_bounds(self, bunchs): """Compute the data bounds.""" if not bunchs: # pragma: no cover return (0, 0, self.duration, 1) m = min( np.quantile(bunch.amplitudes, 1 - self.quantile) for bunch in bunchs if len(bunch.amplitudes)) m = min(0, m) # ensure ymin <= 0 M = max( np.quantile(bunch.amplitudes, self.quantile) for bunch in bunchs if len(bunch.amplitudes)) return (0, m, self.duration, M) def _add_histograms(self, bunchs): # We do this after get_clusters_data because we need x_max. for bunch in bunchs: bunch.histogram = _compute_histogram( bunch.amplitudes, x_min=self.data_bounds[1], x_max=self.data_bounds[3], n_bins=self.n_bins, normalize=True, ignore_zeros=True, ) return bunchs def show_time_range(self, interval=(0, 0)): start, end = interval x0 = -1 + 2 * (start / self.duration) x1 = -1 + 2 * (end / self.duration) xm = .5 * (x0 + x1) pos = np.array([ [xm, -1], [xm, +1], [xm, +1], [xm, -1], ]) self.patch_visual.program['u_interval_size'] = .5 * (x1 - x0) self.patch_visual.set_data(pos=pos, color=self.time_range_color, depth=[0, 0, 1, 1]) self.canvas.update() def _plot_cluster(self, bunch): """Make the scatter plot.""" ms = self._marker_size if not len(bunch.histogram): return # Histogram in the background. self.hist_visual.add_batch_data(hist=bunch.histogram, ylim=self._ylim, color=add_alpha( bunch.color, self.histogram_alpha)) # Scatter plot. self.visual.add_batch_data(pos=bunch.pos, color=bunch.color, size=ms, data_bounds=self.data_bounds) def get_clusters_data(self, load_all=None): """Return a list of Bunch instances, with attributes pos and spike_ids.""" if not len(self.cluster_ids): return cluster_ids = list(self.cluster_ids) # Don't need the background when splitting. if not load_all: # Add None cluster which means background spikes. cluster_ids = [None] + cluster_ids bunchs = self.amplitudes[self.amplitudes_type](cluster_ids, load_all=load_all) or () # Add a pos attribute in bunchs in addition to x and y. for i, (cluster_id, bunch) in enumerate(zip(cluster_ids, bunchs)): spike_ids = _as_array(bunch.spike_ids) spike_times = _as_array(bunch.spike_times) amplitudes = _as_array(bunch.amplitudes) assert spike_ids.shape == spike_times.shape == amplitudes.shape # Ensure that bunch.pos exists, as it used by the LassoMixin. bunch.pos = np.c_[spike_times, amplitudes] assert bunch.pos.ndim == 2 bunch.cluster_id = cluster_id bunch.color = ( selected_cluster_color(i - 1, self.marker_alpha) # Background amplitude color. if cluster_id is not None else (.5, .5, .5, .5)) return bunchs def plot(self, **kwargs): """Update the view with the current cluster selection.""" bunchs = self.get_clusters_data(**kwargs) if not bunchs: return self.data_bounds = self._get_data_bounds(bunchs) bunchs = self._add_histograms(bunchs) # Use the same scale for all histograms. self._ylim = max(bunch.histogram.max() for bunch in bunchs) if bunchs else 1. self.visual.reset_batch() self.hist_visual.reset_batch() for bunch in bunchs: self._plot_cluster(bunch) self.canvas.update_visual(self.visual) self.canvas.update_visual(self.hist_visual) self._update_axes() self.canvas.update() self.update_status() def attach(self, gui): """Attach the view to the GUI.""" super(AmplitudeView, self).attach(gui) # Amplitude type actions. def _make_amplitude_action(a): def callback(): self.amplitudes_type = a self.plot() return callback for a in self.amplitudes_types.keys(): name = 'Change amplitudes type to %s' % a self.actions.add(_make_amplitude_action(a), show_shortcut=False, name=name, view_submenu='Change amplitudes type') self.actions.add(self.next_amplitudes_type, set_busy=True) self.actions.add(self.previous_amplitudes_type, set_busy=True) @property def status(self): return self.amplitudes_type @property def amplitudes_type(self): return self.amplitudes_types.current @amplitudes_type.setter def amplitudes_type(self, value): self.amplitudes_types.set(value) def next_amplitudes_type(self): """Switch to the next amplitudes type.""" self.amplitudes_types.next() logger.debug("Switch to amplitudes type: %s.", self.amplitudes_types.current) self.plot() def previous_amplitudes_type(self): """Switch to the previous amplitudes type.""" self.amplitudes_types.previous() logger.debug("Switch to amplitudes type: %s.", self.amplitudes_types.current) self.plot() def on_mouse_click(self, e): """Select a time from the amplitude view to display in the trace view.""" if 'Alt' in e.modifiers: mouse_pos = self.canvas.panzoom.window_to_ndc(e.pos) time = Range(NDC, self.data_bounds).apply(mouse_pos)[0][0] emit('select_time', self, time)
class FeatureView(MarkerSizeMixin, ScalingMixin, ManualClusteringView): """This view displays a 4x4 subplot matrix with different projections of the principal component features. This view keeps track of which channels are currently shown. Constructor ----------- features : function Maps `(cluster_id, channel_ids=None, load_all=False)` to `Bunch(data, channel_ids, channel_labels, spike_ids , masks)`. * `data` is an `(n_spikes, n_channels, n_features)` array * `channel_ids` contains the channel ids of every row in `data` * `channel_labels` contains the channel labels of every row in `data` * `spike_ids` is a `(n_spikes,)` array * `masks` is an `(n_spikes, n_channels)` array This allows for a sparse format. attributes : dict Maps an attribute name to a 1D array with `n_spikes` numbers (for example, spike times). """ # Do not show too many clusters. max_n_clusters = 8 _default_position = 'right' cluster_ids = () # Whether to disable automatic selection of channels. fixed_channels = False feature_scaling = 1. default_shortcuts = { 'change_marker_size': 'alt+wheel', 'increase': 'ctrl++', 'decrease': 'ctrl+-', 'add_lasso_point': 'ctrl+click', 'stop_lasso': 'ctrl+right click', 'toggle_automatic_channel_selection': 'c', } def __init__(self, features=None, attributes=None, **kwargs): super(FeatureView, self).__init__(**kwargs) self.state_attrs += ('fixed_channels', 'feature_scaling') assert features self.features = features self._lim = 1 self.grid_dim = _get_default_grid() # 2D array where every item a string like `0A,1B` self.n_rows, self.n_cols = np.array(self.grid_dim).shape self.canvas.set_layout('grid', shape=(self.n_rows, self.n_cols)) self.canvas.enable_lasso() # Channels being shown. self.channel_ids = None # Attributes: extra features. This is a dictionary # {name: array} # where each array is a `(n_spikes,)` array. self.attributes = attributes or {} self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) def set_grid_dim(self, grid_dim): """Change the grid dim dynamically. Parameters ---------- grid_dim : array-like (2D) `grid_dim[row, col]` is a string with two values separated by a comma. Each value is the relative channel id (0, 1, 2...) followed by the PC (A, B, C...). For example, `grid_dim[row, col] = 0B,1A`. Each value can also be an attribute name, for example `time`. For example, `grid_dim[row, col] = time,2C`. """ self.grid_dim = grid_dim self.n_rows, self.n_cols = np.array(grid_dim).shape self.canvas.grid.shape = (self.n_rows, self.n_cols) # Internal methods # ------------------------------------------------------------------------- def _iter_subplots(self): """Yield (i, j, dim).""" for i in range(self.n_rows): for j in range(self.n_cols): dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') yield i, j, dim_x, dim_y def _get_axis_label(self, dim): """Return the channel label from a dimension, if applicable.""" if str(dim[:-1]).isdecimal(): n = len(self.channel_ids) channel_id = self.channel_ids[int(dim[:-1]) % n] return self.channel_labels[channel_id] + dim[-1] else: return dim def _get_channel_and_pc(self, dim): """Return the channel_id and PC of a dim.""" if self.channel_ids is None: return assert dim not in self.attributes # This is called only on PC data. s = 'ABCDEFGHIJ' # Channel relative index, typically just 0 or 1. c_rel = int(dim[:-1]) # Get the channel_id from the currently-selected channels. channel_id = self.channel_ids[c_rel % len(self.channel_ids)] pc = s.index(dim[-1]) return channel_id, pc def _get_axis_data(self, bunch, dim, cluster_id=None, load_all=None): """Extract the points from the data on a given dimension. bunch is returned by the features() function. dim is the string specifying the dimensions to extract for the data. """ if dim in self.attributes: return self.attributes[dim](cluster_id, load_all=load_all) masks = bunch.get('masks', None) channel_id, pc = self._get_channel_and_pc(dim) # Skip the plot if the channel id is not displayed. if channel_id not in bunch.channel_ids: # pragma: no cover return Bunch(data=np.zeros((bunch.data.shape[0],))) # Get the column index of the current channel in data. c = list(bunch.channel_ids).index(channel_id) if masks is not None: masks = masks[:, c] return Bunch(data=self.feature_scaling * bunch.data[:, c, pc], masks=masks) def _get_axis_bounds(self, dim, bunch): """Return the min/max of an axis.""" if dim in self.attributes: # Attribute: specified lim, or compute the min/max. vmin, vmax = bunch.get('lim', (0, 0)) assert vmin is not None assert vmax is not None return vmin, vmax return (-self._lim, +self._lim) def _plot_points(self, bunch, clu_idx=None): if not bunch: return cluster_id = self.cluster_ids[clu_idx] if clu_idx is not None else None for i, j, dim_x, dim_y in self._iter_subplots(): px = self._get_axis_data(bunch, dim_x, cluster_id=cluster_id) py = self._get_axis_data(bunch, dim_y, cluster_id=cluster_id) # Skip empty data. if px is None or py is None: # pragma: no cover logger.warning("Skipping empty data for cluster %d.", cluster_id) return assert px.data.shape == py.data.shape xmin, xmax = self._get_axis_bounds(dim_x, px) ymin, ymax = self._get_axis_bounds(dim_y, py) assert xmin <= xmax assert ymin <= ymax data_bounds = (xmin, ymin, xmax, ymax) masks = _get_masks_max(px, py) # Prepare the batch visual with all subplots # for the selected cluster. self.visual.add_batch_data( x=px.data, y=py.data, color=_get_point_color(clu_idx), # Reduced marker size for background features size=self._marker_size, masks=_get_point_masks(clu_idx=clu_idx, masks=masks), data_bounds=data_bounds, box_index=(i, j), ) # Get the channel ids corresponding to the relative channel indices # specified in the dimensions. Channel 0 corresponds to the first # best channel for the selected cluster, and so on. label_x = self._get_axis_label(dim_x) label_y = self._get_axis_label(dim_y) # Add labels. self.text_visual.add_batch_data( pos=[1, 1], anchor=[-1, -1], text=label_y, data_bounds=None, box_index=(i, j), ) self.text_visual.add_batch_data( pos=[0, -1.], anchor=[0, 1], text=label_x, data_bounds=None, box_index=(i, j), ) def _plot_axes(self): self.line_visual.reset_batch() for i, j, dim_x, dim_y in self._iter_subplots(): self.line_visual.add_batch_data( pos=[[-1., 0., +1., 0.], [0., -1., 0., +1.]], color=(.5, .5, .5, .5), box_index=(i, j), data_bounds=None, ) self.canvas.update_visual(self.line_visual) def _get_lim(self, bunchs): if not bunchs: # pragma: no cover return 1 m, M = min(bunch.data.min() for bunch in bunchs), max(bunch.data.max() for bunch in bunchs) M = max(abs(m), abs(M)) return M def _get_scaling_value(self): return self.feature_scaling def _set_scaling_value(self, value): self.feature_scaling = value self.plot(fixed_channels=True) # Public methods # ------------------------------------------------------------------------- def clear_channels(self): """Reset the current channels.""" self.channel_ids = None self.plot() def get_clusters_data(self, fixed_channels=None, load_all=None): # Get the feature data. # Specify the channel ids if these are fixed, otherwise # choose the first cluster's best channels. c = self.channel_ids if fixed_channels else None bunchs = [self.features(cluster_id, channel_ids=c) for cluster_id in self.cluster_ids] bunchs = [b for b in bunchs if b] if not bunchs: # pragma: no cover return [] for cluster_id, bunch in zip(self.cluster_ids, bunchs): bunch.cluster_id = cluster_id # Choose the channels based on the first selected cluster. channel_ids = list(bunchs[0].get('channel_ids', [])) if bunchs else [] common_channels = list(channel_ids) # Intersection (with order kept) of channels belonging to all clusters. for bunch in bunchs: common_channels = [c for c in bunch.get('channel_ids', []) if c in common_channels] # The selected channels will be (1) the channels common to all clusters, followed # by (2) remaining channels from the first cluster (excluding those already selected # in (1)). n = len(channel_ids) not_common_channels = [c for c in channel_ids if c not in common_channels] channel_ids = common_channels + not_common_channels[:n - len(common_channels)] assert len(channel_ids) > 0 # Choose the channels automatically unless fixed_channels is set. if (not fixed_channels or self.channel_ids is None): self.channel_ids = channel_ids assert len(self.channel_ids) # Channel labels. self.channel_labels = {} for d in bunchs: chl = d.get('channel_labels', ['%d' % ch for ch in d.get('channel_ids', [])]) self.channel_labels.update({ channel_id: chl[i] for i, channel_id in enumerate(d.get('channel_ids', []))}) return bunchs def plot(self, **kwargs): """Update the view with the selected clusters.""" # Determine whether the channels should be fixed or not. added = kwargs.get('up', {}).get('added', None) # Fix the channels if the view updates after a cluster event # and there are new clusters. fixed_channels = ( self.fixed_channels or kwargs.get('fixed_channels', None) or added is not None) # Get the clusters data. bunchs = self.get_clusters_data(fixed_channels=fixed_channels) bunchs = [b for b in bunchs if b] if not bunchs: return self._lim = self._get_lim(bunchs) # Get the background data. background = self.features(channel_ids=self.channel_ids) # Plot all features. self._plot_axes() # NOTE: the columns in bunch.data are ordered by decreasing quality # of the associated channels. The channels corresponding to each # column are given in bunch.channel_ids in the same order. # Plot points. self.visual.reset_batch() self.text_visual.reset_batch() self._plot_points(background) # background spikes # Plot each cluster. for clu_idx, bunch in enumerate(bunchs): self._plot_points(bunch, clu_idx=clu_idx) # Upload the data on the GPU. self.canvas.update_visual(self.visual) self.canvas.update_visual(self.text_visual) self.canvas.update() def attach(self, gui): """Attach the view to the GUI.""" super(FeatureView, self).attach(gui) self.actions.add( self.toggle_automatic_channel_selection, checked=not self.fixed_channels, checkable=True) self.actions.add(self.clear_channels) self.actions.separator() def toggle_automatic_channel_selection(self, checked): """Toggle the automatic selection of channels when the cluster selection changes.""" self.fixed_channels = not checked @property def status(self): if self.channel_ids is None: # pragma: no cover return '' channel_labels = [self.channel_labels[ch] for ch in self.channel_ids[:2]] return 'channels: %s' % ', '.join(channel_labels) # Dimension selection # ------------------------------------------------------------------------- def on_select_channel(self, sender=None, channel_id=None, key=None, button=None): """Respond to the click on a channel from another view, and update the relevant subplots.""" channels = self.channel_ids if channels is None: return if len(channels) == 1: self.plot() return assert len(channels) >= 2 # Get the axis from the pressed button (1, 2, etc.) if key is not None: d = np.clip(len(channels) - 1, 0, key - 1) else: d = 0 if button == 'Left' else 1 # Change the first or second best channel. old = channels[d] # Avoid updating the view if the channel doesn't change. if channel_id == old: return channels[d] = channel_id # Ensure that the first two channels are different. if channels[1 - min(d, 1)] == channel_id: channels[1 - min(d, 1)] = old assert channels[0] != channels[1] # Remove duplicate channels. self.channel_ids = _uniq(channels) logger.debug("Choose channels %d and %d in feature view.", *channels[:2]) # Fix the channels temporarily. self.plot(fixed_channels=True) self.update_status() def on_mouse_click(self, e): """Select a feature dimension by clicking on a box in the feature view.""" b = e.button if 'Alt' in e.modifiers: # Get mouse position in NDC. (i, j), _ = self.canvas.grid.box_map(e.pos) dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') dim = dim_x if b == 'Left' else dim_y other_dim = dim_y if b == 'Left' else dim_x if dim not in self.attributes: # When a regular (channel, PC) dimension is selected. channel_pc = self._get_channel_and_pc(dim) if channel_pc is None: return channel_id, pc = channel_pc logger.debug("Click on feature dim %s, channel id %s, PC %s.", dim, channel_id, pc) else: # When the selected dimension is an attribute, e.g. "time". pc = None # Take the channel id in the other dimension. channel_pc = self._get_channel_and_pc(other_dim) channel_id = channel_pc[0] if channel_pc is not None else None logger.debug("Click on feature dim %s.", dim) emit('select_feature', self, dim=dim, channel_id=channel_id, pc=pc) def on_request_split(self, sender=None): """Return the spikes enclosed by the lasso.""" if (self.canvas.lasso.count < 3 or not len(self.cluster_ids)): # pragma: no cover return np.array([], dtype=np.int64) assert len(self.channel_ids) # Get the dimensions of the lassoed subplot. i, j = self.canvas.layout.active_box dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') # Get all points from all clusters. pos = [] spike_ids = [] for cluster_id in self.cluster_ids: # Load all spikes. bunch = self.features(cluster_id, channel_ids=self.channel_ids, load_all=True) if not bunch: continue px = self._get_axis_data(bunch, dim_x, cluster_id=cluster_id, load_all=True) py = self._get_axis_data(bunch, dim_y, cluster_id=cluster_id, load_all=True) points = np.c_[px.data, py.data] # Normalize the points. xmin, xmax = self._get_axis_bounds(dim_x, px) ymin, ymax = self._get_axis_bounds(dim_y, py) r = Range((xmin, ymin, xmax, ymax)) points = r.apply(points) pos.append(points) spike_ids.append(bunch.spike_ids) pos = np.vstack(pos) spike_ids = np.concatenate(spike_ids) # Find lassoed spikes. ind = self.canvas.lasso.in_polygon(pos) self.canvas.lasso.clear() return np.unique(spike_ids[ind])
class ScatterView(MarkerSizeMixin, LassoMixin, ManualClusteringView): """This view displays a scatter plot for all selected clusters. Constructor ----------- coords : function Maps `cluster_ids` to a list `[Bunch(x, y, spike_ids, data_bounds), ...]` for each cluster. """ _default_position = 'right' default_shortcuts = { 'change_marker_size': 'ctrl+wheel', } def __init__(self, coords=None, **kwargs): super(ScatterView, self).__init__(**kwargs) # Save the marker size in the global and local view's config. self.canvas.enable_axes() self.canvas.enable_lasso() assert coords self.coords = coords self.visual = ScatterVisual() self.canvas.add_visual(self.visual) def _plot_cluster(self, bunch): ms = self._marker_size self.visual.add_batch_data( pos=bunch.pos, color=bunch.color, size=ms, data_bounds=self.data_bounds) def _get_split_cluster_data(self, bunchs): """Get the data when there is one Bunch per cluster.""" # Add a pos attribute in bunchs in addition to x and y. for i, (cluster_id, bunch) in enumerate(zip(self.cluster_ids, bunchs)): bunch.cluster_id = cluster_id if 'pos' not in bunch: assert bunch.x.ndim == 1 assert bunch.x.shape == bunch.y.shape bunch.pos = np.c_[bunch.x, bunch.y] assert bunch.pos.ndim == 2 assert 'spike_ids' in bunch bunch.color = selected_cluster_color(i, .75) return bunchs def _get_collated_cluster_data(self, bunch): """Get the data when there is a single Bunch for all selected clusters.""" assert 'spike_ids' in bunch if 'pos' not in bunch: assert bunch.x.ndim == 1 assert bunch.x.shape == bunch.y.shape bunch.pos = np.c_[bunch.x, bunch.y] assert bunch.pos.ndim == 2 bunch.color = spike_colors(bunch.spike_clusters, self.cluster_ids) return bunch def get_clusters_data(self, load_all=None): """Return a list of Bunch instances, with attributes pos and spike_ids.""" if not load_all: bunchs = self.coords(self.cluster_ids) or () elif 'load_all' in inspect.signature(self.coords).parameters: bunchs = self.coords(self.cluster_ids, load_all=load_all) or () else: logger.warning( "The view `%s` may not load all spikes when using the lasso for splitting.", self.__class__.__name__) bunchs = self.coords(self.cluster_ids) if isinstance(bunchs, dict): return [self._get_collated_cluster_data(bunchs)] elif isinstance(bunchs, (list, tuple)): return self._get_split_cluster_data(bunchs) raise ValueError("The output of `coords()` should be either a list of Bunch, or a Bunch.") def plot(self, **kwargs): """Update the view with the current cluster selection.""" bunchs = self.get_clusters_data() # Hide the visual if there is no data. if not bunchs: self.visual.hide() self.canvas.update() return self.data_bounds = self._get_data_bounds(bunchs) self.visual.reset_batch() for bunch in bunchs: self._plot_cluster(bunch) self.canvas.update_visual(self.visual) self.visual.show() self._update_axes() self.canvas.update()