예제 #1
0
    def _distribution_summary_plot(self, phylum_rel_dists, taxa_for_dist_inference, plot_file):
        """Summary plot showing the distribution of taxa at each taxonomic rank under different rootings.

        Parameters
        ----------
        phylum_rel_dists: phylum_rel_dists[phylum][rank_index][taxon] -> relative divergences
            Relative divergence of taxon at each rank for different phylum-level rootings.
        taxa_for_dist_inference : iterable
            Taxa to considered when inferring distributions.
        plot_file : str
            Desired name of output plot.
        """

        self.fig.clear()
        self.fig.set_size_inches(12, 6)
        ax = self.fig.add_subplot(111)

        # determine median relative distance for each taxa
        medians_for_taxa = self.taxa_median_rd(phylum_rel_dists)

        # create percentile and classification boundary lines
        percentiles = {}
        for i, rank in enumerate(sorted(medians_for_taxa.keys())):
            v = [np_median(dists) for taxon, dists in medians_for_taxa[rank].items() if taxon in taxa_for_dist_inference]
            if not v:
                # not taxa at rank suitable for creating classification boundaries
                continue
            
            p10, p50, p90 = np_percentile(v, [10, 50, 90])
            ax.plot((p10, p10), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p50, p50), (i, i + 0.5), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p90, p90), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)

            for b in [-0.2, -0.1, 0.1, 0.2]:
                boundary = p50 + b
                if boundary < 1.0 and boundary > 0.0:
                    if abs(b) == 0.1:
                        c = (1.0, 0.65, 0.0)  # orange
                    else:
                        c = (1.0, 0.0, 0.0)
                    ax.plot((boundary, boundary), (i, i + 0.5), c=c, lw=2, zorder=2)

            percentiles[i] = [p10, p50, p90]

        # create scatter plot and results table
        x = []
        y = []
        c = []
        labels = []
        rank_labels = []
        for i, rank in enumerate(sorted(medians_for_taxa.keys())):
            rank_label = Taxonomy.rank_labels[rank]
            rank_labels.append(rank_label + ' (%d)' % len(medians_for_taxa[rank]))

            mono = []
            poly = []
            no_inference = []
            for clade_label, dists in medians_for_taxa[rank].items():
                md = np_median(dists)
                x.append(md)
                y.append(i)
                labels.append(clade_label)

                if is_integer(clade_label.split('^')[-1]):
                    # taxa with a numerical suffix after a caret indicate 
                    # polyphyletic groups when decorated with tax2tree
                    c.append((1.0, 0.0, 0.0))
                    poly.append(md)
                elif clade_label not in taxa_for_dist_inference:
                    c.append((0.3, 0.3, 0.3))
                    no_inference.append(md)
                else:
                    c.append((0.0, 0.0, 1.0))
                    mono.append(md)

            # histogram for each rank
            n = 0
            if len(mono) > 0:
                mono = np_array(mono)
                no_inference = np_array(no_inference)
                poly = np_array(poly)
                binwidth = 0.025
                bins = np_arange(0, 1.0 + binwidth, binwidth)

                mono_max_count = max(np_histogram(mono, bins=bins)[0])
                mono_weights = np_ones_like(mono) * (1.0 / mono_max_count)

                w = float(len(mono)) / (len(mono) + len(poly) + len(no_inference))
                n, b, p = ax.hist(mono, bins=bins,
                          color=(0.0, 0.0, 1.0),
                          alpha=0.25,
                          weights=0.9 * w * mono_weights,
                          bottom=i,
                          lw=0,
                          zorder=0)
                      
            if len(no_inference) > 0:
                no_inference_max_count = max(np_histogram(no_inference, bins=bins)[0])
                no_inference_weights = np_ones_like(no_inference) * (1.0 / no_inference_max_count)

                ax.hist(no_inference, bins=bins,
                          color=(0.3, 0.3, 0.3),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * no_inference_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

            if len(poly) > 0:
                poly_max_count = max(np_histogram(poly, bins=bins)[0])
                poly_weights = np_ones_like(poly) * (1.0 / poly_max_count)

                ax.hist(poly, bins=bins,
                          color=(1.0, 0.0, 0.0),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * poly_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

        scatter = ax.scatter(x, y, alpha=0.5, s=48, c=c, zorder=1)

        # set plot elements
        ax.grid(color=(0.8, 0.8, 0.8), linestyle='dashed')

        ax.set_xlabel('relative distance')
        ax.set_xticks(np_arange(0, 1.05, 0.1))
        ax.set_xlim([-0.01, 1.01])

        ax.set_ylabel('rank (no. taxa)')
        ax.set_yticks(range(0, len(medians_for_taxa)))
        ax.set_ylim([-0.2, len(medians_for_taxa) - 0.01])
        ax.set_yticklabels(rank_labels)

        self.prettify(ax)

        # make plot interactive
        mpld3.plugins.clear(self.fig)
        mpld3.plugins.connect(self.fig, mpld3.plugins.PointLabelTooltip(scatter, labels=labels))
        mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=10))
        mpld3.save_html(self.fig, plot_file[0:plot_file.rfind('.')] + '.html')

        self.fig.tight_layout(pad=1)
        self.fig.savefig(plot_file, dpi=self.dpi)
예제 #2
0
    def _distribution_summary_plot(self, phylum_rel_dists, taxa_for_dist_inference, plot_file):
        """Summary plot showing the distribution of taxa at each taxonomic rank under different rootings.

        Parameters
        ----------
        phylum_rel_dists: phylum_rel_dists[phylum][rank_index][taxon] -> relative divergences
            Relative divergence of taxon at each rank for different phylum-level rootings.
        taxa_for_dist_inference : iterable
            Taxa to considered when inferring distributions.
        plot_file : str
            Desired name of output plot.
        """

        self.fig.clear()
        self.fig.set_size_inches(12, 6)
        ax = self.fig.add_subplot(111)

        # determine median relative distance for each taxa
        medians_for_taxa = self.taxa_median_rd(phylum_rel_dists)

        # create percentile and classification boundary lines
        percentiles = {}
        for i, rank in enumerate(sorted(medians_for_taxa.keys())):
            v = [np_median(dists) for taxon, dists in medians_for_taxa[rank].iteritems() if taxon in taxa_for_dist_inference]
            p10, p50, p90 = np_percentile(v, [10, 50, 90])
            ax.plot((p10, p10), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p50, p50), (i, i + 0.5), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p90, p90), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)

            for b in [-0.2, -0.1, 0.1, 0.2]:
                boundary = p50 + b
                if boundary < 1.0 and boundary > 0.0:
                    if abs(b) == 0.1:
                        c = (1.0, 0.65, 0.0)  # orange
                    else:
                        c = (1.0, 0.0, 0.0)
                    ax.plot((boundary, boundary), (i, i + 0.5), c=c, lw=2, zorder=2)

            percentiles[i] = [p10, p50, p90]

        # create scatter plot and results table
        x = []
        y = []
        c = []
        labels = []
        rank_labels = []
        for i, rank in enumerate(sorted(medians_for_taxa.keys())):
            rank_label = Taxonomy.rank_labels[rank]
            rank_labels.append(rank_label + ' (%d)' % len(medians_for_taxa[rank]))

            mono = []
            poly = []
            no_inference = []
            for clade_label, dists in medians_for_taxa[rank].iteritems():
                md = np_median(dists)
                x.append(md)
                y.append(i)
                labels.append(clade_label)

                if is_integer(clade_label.split('^')[-1]):
                    # taxa with a numerical suffix after a caret indicate 
                    # polyphyletic groups when decorated with tax2tree
                    c.append((1.0, 0.0, 0.0))
                    poly.append(md)
                elif clade_label not in taxa_for_dist_inference:
                    c.append((0.3, 0.3, 0.3))
                    no_inference.append(md)
                else:
                    c.append((0.0, 0.0, 1.0))
                    mono.append(md)

            # histogram for each rank
            mono = np_array(mono)
            no_inference = np_array(no_inference)
            poly = np_array(poly)
            binwidth = 0.025
            bins = np_arange(0, 1.0 + binwidth, binwidth)

            mono_max_count = max(np_histogram(mono, bins=bins)[0])
            mono_weights = np_ones_like(mono) * (1.0 / mono_max_count)

            w = float(len(mono)) / (len(mono) + len(poly) + len(no_inference))
            n, b, p = ax.hist(mono, bins=bins,
                      color=(0.0, 0.0, 1.0),
                      alpha=0.25,
                      weights=0.9 * w * mono_weights,
                      bottom=i,
                      lw=0,
                      zorder=0)
                      
            if len(no_inference) > 0:
                no_inference_max_count = max(np_histogram(no_inference, bins=bins)[0])
                no_inference_weights = np_ones_like(no_inference) * (1.0 / no_inference_max_count)

                ax.hist(no_inference, bins=bins,
                          color=(0.3, 0.3, 0.3),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * no_inference_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

            if len(poly) > 0:
                poly_max_count = max(np_histogram(poly, bins=bins)[0])
                poly_weights = np_ones_like(poly) * (1.0 / poly_max_count)

                ax.hist(poly, bins=bins,
                          color=(1.0, 0.0, 0.0),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * poly_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

        scatter = ax.scatter(x, y, alpha=0.5, s=48, c=c, zorder=1)

        # set plot elements
        ax.grid(color=(0.8, 0.8, 0.8), linestyle='dashed')

        ax.set_xlabel('relative distance')
        ax.set_xticks(np_arange(0, 1.05, 0.1))
        ax.set_xlim([-0.01, 1.01])

        ax.set_ylabel('rank (no. taxa)')
        ax.set_yticks(xrange(0, len(medians_for_taxa)))
        ax.set_ylim([-0.2, len(medians_for_taxa) - 0.01])
        ax.set_yticklabels(rank_labels)

        self.prettify(ax)

        # make plot interactive
        mpld3.plugins.clear(self.fig)
        mpld3.plugins.connect(self.fig, mpld3.plugins.PointLabelTooltip(scatter, labels=labels))
        mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=10))
        mpld3.save_html(self.fig, plot_file[0:plot_file.rfind('.')] + '.html')

        self.fig.tight_layout(pad=1)
        self.fig.savefig(plot_file, dpi=self.dpi)
예제 #3
0
    def _distribution_plot(self, rel_dists, taxa_for_dist_inference, distribution_table, plot_file):
        """Create plot showing the distribution of taxa at each taxonomic rank.

        Parameters
        ----------
        rel_dists: d[rank_index][taxon] -> relative divergence
            Relative divergence of taxa at each rank.
        taxa_for_dist_inference : iterable
            Taxa to considered when inferring distributions.
        distribution_table : str
            Desired name of output table with distribution information.
        plot_file : str
            Desired name of output plot.
        """

        self.fig.clear()
        self.fig.set_size_inches(12, 6)
        ax = self.fig.add_subplot(111)
        
        
        # create normal distributions
        for i, rank in enumerate(sorted(rel_dists.keys())):
            v = [dist for taxa, dist in rel_dists[rank].items() if taxa in taxa_for_dist_inference]
            if len(v) < 2:
                continue
                
            u = np_mean(v)
            rv = norm(loc=u, scale=np_std(v))
            x = np_linspace(rv.ppf(0.001), rv.ppf(0.999), 1000)
            nd = rv.pdf(x)
            # ax.plot(x, 0.75 * (nd / max(nd)) + i, 'b-', alpha=0.6, zorder=2)
            # ax.plot((u, u), (i, i + 0.5), 'b-', zorder=2)

        # create percentile and classifciation boundary lines
        percentiles = {}
        for i, rank in enumerate(sorted(rel_dists.keys())):
            v = [dist for taxa, dist in rel_dists[rank].items() if taxa in taxa_for_dist_inference]
            if len(v) == 0:
                continue
                
            p10, p50, p90 = np_percentile(v, [10, 50, 90])
            ax.plot((p10, p10), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p50, p50), (i, i + 0.5), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p90, p90), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)

            for b in [-0.2, -0.1, 0.1, 0.2]:
                boundary = p50 + b
                if boundary < 1.0 and boundary > 0.0:
                    if abs(b) == 0.1:
                        c = (1.0, 0.65, 0.0)  # orange
                    else:
                        c = (1.0, 0.0, 0.0)
                    ax.plot((boundary, boundary), (i, i + 0.5), c=c, lw=2, zorder=2)

            percentiles[i] = [p10, p50, p90]

    
        # create scatter plot and results table
        fout = open(distribution_table, 'w')
        fout.write('Taxa\tRelative Distance\tP10\tMedian\tP90\tPercentile outlier\n')
        x = []
        y = []
        c = []
        labels = []
        rank_labels = []
        for i, rank in enumerate(sorted(rel_dists.keys())):
            rank_label = Taxonomy.rank_labels[rank]
            rank_labels.append(rank_label + ' (%d)' % len(rel_dists[rank]))
            
            mono = []
            poly = []
            no_inference = []
            for clade_label, dist in rel_dists[rank].items():
                x.append(dist)
                y.append(i)
                labels.append(clade_label)

                if is_integer(clade_label.split('^')[-1]):
                    # taxa with a numerical suffix after a caret indicate 
                    # polyphyletic groups when decorated with tax2tree
                    c.append((1.0, 0.0, 0.0))
                    poly.append(dist)
                elif clade_label not in taxa_for_dist_inference:
                    c.append((0.3, 0.3, 0.3))
                    no_inference.append(dist)
                else:
                    c.append((0.0, 0.0, 1.0))
                    mono.append(dist)
            
                # report results
                v = [clade_label, dist]
                if i in percentiles:
                    p10, p50, p90 = percentiles[i]
                    percentile_outlier = not (dist >= p10 and dist <= p90)
                    v += percentiles[i] + [str(percentile_outlier)]
                else:
                    percentile_outlier = 'Insufficent data to calculate percentiles'
                    v += [-1,-1,-1] + [str(percentile_outlier)]
                
                fout.write('%s\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n' % tuple(v))
        
            # histogram for each rank
            mono = np_array(mono)
            no_inference = np_array(no_inference)
            poly = np_array(poly)
            binwidth = 0.025
            bins = np_arange(0, 1.0 + binwidth, binwidth)

            d = len(mono) + len(poly) + len(no_inference)
            if d == 0:
                break
                
            w = float(len(mono)) / d
            n = 0
            if len(mono) > 0:
                mono_max_count = max(np_histogram(mono, bins=bins)[0])
                mono_weights = np_ones_like(mono) * (1.0 / mono_max_count)

                n, b, p = ax.hist(mono, bins=bins,
                          color=(0.0, 0.0, 1.0),
                          alpha=0.25,
                          weights=0.9 * w * mono_weights,
                          bottom=i,
                          lw=0,
                          zorder=0)
                      
            if len(no_inference) > 0:
                no_inference_max_count = max(np_histogram(no_inference, bins=bins)[0])
                no_inference_weights = np_ones_like(no_inference) * (1.0 / no_inference_max_count)

                ax.hist(no_inference, bins=bins,
                          color=(0.3, 0.3, 0.3),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * no_inference_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

            if len(poly) > 0:
                poly_max_count = max(np_histogram(poly, bins=bins)[0])
                poly_weights = np_ones_like(poly) * (1.0 / poly_max_count)

                ax.hist(poly, bins=bins,
                          color=(1.0, 0.0, 0.0),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * poly_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)
                          
        fout.close()

    
        # overlay scatter plot elements
        scatter = ax.scatter(x, y, alpha=0.5, s=48, c=c, zorder=1)

        # set plot elements
        ax.grid(color=(0.8, 0.8, 0.8), linestyle='dashed')

        ax.set_xlabel('relative distance')
        ax.set_xticks(np_arange(0, 1.05, 0.1))
        ax.set_xlim([-0.05, 1.05])

        ax.set_ylabel('rank (no. taxa)')
        ax.set_yticks(range(0, len(rel_dists)))
        ax.set_ylim([-0.2, len(rel_dists) - 0.01])
        ax.set_yticklabels(rank_labels)

        self.prettify(ax)

        # make plot interactive
        mpld3.plugins.clear(self.fig)
        mpld3.plugins.connect(self.fig, mpld3.plugins.PointLabelTooltip(scatter, labels=labels))
        mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=10))
        mpld3.save_html(self.fig, plot_file[0:plot_file.rfind('.')] + '.html')

        self.fig.tight_layout(pad=1)
        self.fig.savefig(plot_file, dpi=self.dpi)
예제 #4
0
    def _distribution_plot(self, rel_dists, taxa_for_dist_inference, distribution_table, plot_file):
        """Create plot showing the distribution of taxa at each taxonomic rank.

        Parameters
        ----------
        rel_dists: d[rank_index][taxon] -> relative divergence
            Relative divergence of taxa at each rank.
        taxa_for_dist_inference : iterable
            Taxa to considered when inferring distributions.
        distribution_table : str
            Desired name of output table with distribution information.
        plot_file : str
            Desired name of output plot.
        """

        self.fig.clear()
        self.fig.set_size_inches(12, 6)
        ax = self.fig.add_subplot(111)
        
        
        # create normal distributions
        for i, rank in enumerate(sorted(rel_dists.keys())):
            v = [dist for taxa, dist in rel_dists[rank].iteritems() if taxa in taxa_for_dist_inference]
            if len(v) < 2:
                continue
                
            u = np_mean(v)
            rv = norm(loc=u, scale=np_std(v))
            x = np_linspace(rv.ppf(0.001), rv.ppf(0.999), 1000)
            nd = rv.pdf(x)
            # ax.plot(x, 0.75 * (nd / max(nd)) + i, 'b-', alpha=0.6, zorder=2)
            # ax.plot((u, u), (i, i + 0.5), 'b-', zorder=2)

        # create percentile and classifciation boundary lines
        percentiles = {}
        for i, rank in enumerate(sorted(rel_dists.keys())):
            v = [dist for taxa, dist in rel_dists[rank].iteritems() if taxa in taxa_for_dist_inference]
            if len(v) == 0:
                continue
                
            p10, p50, p90 = np_percentile(v, [10, 50, 90])
            ax.plot((p10, p10), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p50, p50), (i, i + 0.5), c=(0.3, 0.3, 0.3), lw=2, zorder=2)
            ax.plot((p90, p90), (i, i + 0.25), c=(0.3, 0.3, 0.3), lw=2, zorder=2)

            for b in [-0.2, -0.1, 0.1, 0.2]:
                boundary = p50 + b
                if boundary < 1.0 and boundary > 0.0:
                    if abs(b) == 0.1:
                        c = (1.0, 0.65, 0.0)  # orange
                    else:
                        c = (1.0, 0.0, 0.0)
                    ax.plot((boundary, boundary), (i, i + 0.5), c=c, lw=2, zorder=2)

            percentiles[i] = [p10, p50, p90]

    
        # create scatter plot and results table
        fout = open(distribution_table, 'w')
        fout.write('Taxa\tRelative Distance\tP10\tMedian\tP90\tPercentile outlier\n')
        x = []
        y = []
        c = []
        labels = []
        rank_labels = []
        for i, rank in enumerate(sorted(rel_dists.keys())):
            rank_label = Taxonomy.rank_labels[rank]
            rank_labels.append(rank_label + ' (%d)' % len(rel_dists[rank]))
            
            mono = []
            poly = []
            no_inference = []
            for clade_label, dist in rel_dists[rank].iteritems():
                x.append(dist)
                y.append(i)
                labels.append(clade_label)

                if is_integer(clade_label.split('^')[-1]):
                    # taxa with a numerical suffix after a caret indicate 
                    # polyphyletic groups when decorated with tax2tree
                    c.append((1.0, 0.0, 0.0))
                    poly.append(dist)
                elif clade_label not in taxa_for_dist_inference:
                    c.append((0.3, 0.3, 0.3))
                    no_inference.append(dist)
                else:
                    c.append((0.0, 0.0, 1.0))
                    mono.append(dist)
            
                # report results
                v = [clade_label, dist]
                if i in percentiles:
                    p10, p50, p90 = percentiles[i]
                    percentile_outlier = not (dist >= p10 and dist <= p90)
                    v += percentiles[i] + [str(percentile_outlier)]
                else:
                    percentile_outlier = 'Insufficent data to calculate percentiles'
                    v += [-1,-1,-1] + [str(percentile_outlier)]
                
                fout.write('%s\t%.2f\t%.2f\t%.2f\t%.2f\t%s\n' % tuple(v))
        
            # histogram for each rank
            mono = np_array(mono)
            no_inference = np_array(no_inference)
            poly = np_array(poly)
            binwidth = 0.025
            bins = np_arange(0, 1.0 + binwidth, binwidth)

            w = float(len(mono)) / (len(mono) + len(poly) + len(no_inference))
            n = 0
            if len(mono) > 0:
                mono_max_count = max(np_histogram(mono, bins=bins)[0])
                mono_weights = np_ones_like(mono) * (1.0 / mono_max_count)

                n, b, p = ax.hist(mono, bins=bins,
                          color=(0.0, 0.0, 1.0),
                          alpha=0.25,
                          weights=0.9 * w * mono_weights,
                          bottom=i,
                          lw=0,
                          zorder=0)
                      
            if len(no_inference) > 0:
                no_inference_max_count = max(np_histogram(no_inference, bins=bins)[0])
                no_inference_weights = np_ones_like(no_inference) * (1.0 / no_inference_max_count)

                ax.hist(no_inference, bins=bins,
                          color=(0.3, 0.3, 0.3),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * no_inference_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)

            if len(poly) > 0:
                poly_max_count = max(np_histogram(poly, bins=bins)[0])
                poly_weights = np_ones_like(poly) * (1.0 / poly_max_count)

                ax.hist(poly, bins=bins,
                          color=(1.0, 0.0, 0.0),
                          alpha=0.25,
                          weights=0.9 * (1.0 - w) * poly_weights,
                          bottom=i + n,
                          lw=0,
                          zorder=0)
                          
        fout.close()

    
        # overlay scatter plot elements
        scatter = ax.scatter(x, y, alpha=0.5, s=48, c=c, zorder=1)

        # set plot elements
        ax.grid(color=(0.8, 0.8, 0.8), linestyle='dashed')

        ax.set_xlabel('relative distance')
        ax.set_xticks(np_arange(0, 1.05, 0.1))
        ax.set_xlim([-0.05, 1.05])

        ax.set_ylabel('rank (no. taxa)')
        ax.set_yticks(xrange(0, len(rel_dists)))
        ax.set_ylim([-0.2, len(rel_dists) - 0.01])
        ax.set_yticklabels(rank_labels)

        self.prettify(ax)

        # make plot interactive
        mpld3.plugins.clear(self.fig)
        mpld3.plugins.connect(self.fig, mpld3.plugins.PointLabelTooltip(scatter, labels=labels))
        mpld3.plugins.connect(self.fig, mpld3.plugins.MousePosition(fontsize=10))
        mpld3.save_html(self.fig, plot_file[0:plot_file.rfind('.')] + '.html')

        self.fig.tight_layout(pad=1)
        self.fig.savefig(plot_file, dpi=self.dpi)