def test(self,lstSamples,model): """Test the libSVM classifier on the sample set and return the ClassificationResults.""" classification_results = ClassificationResults() print "Testing on %d samples"%(len(lstSamples)) for sample in lstSamples: #if sample.get_class_label() != self.null_flag: # RVF if True: # RVF. Also classify the sample, if the class is previously unknown best_class = self.classify(sample,model) classification_results.add_classification(sample.id,best_class,sample.get_class_label()) return classification_results
def test(self,lstSamples,model,confusionMatrix={}): """Test the CPAR classifier on the sample set and return the ClassificationResults.""" self.rules = model self.rules.set_target_accuracy(self.parameters["accuracy_measure"]) lstRules = self.rules.remap_feature_to_index(lstSamples) if len(lstRules) ==0: return 0 classification_results = ClassificationResults() print "Testing on %d samples"%(len(lstSamples)) for sample in lstSamples: #if sample.get_class_label() != self.null_flag: # uncommented by RVF if True: # RVF. Also classify the sample, if the class is previously unknown intBestClass = self.classify(sample,lstRules) classification_results.add_classification(sample.id,intBestClass,sample.get_class_label()) return classification_results