def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) if opts.level <= 0: option_parser.error("level must be greater than zero!") collapse_f = make_collapse_f(opts.metadata_category, opts.level, opts.ignore) table = load_table(opts.input_fp) if h5py.is_hdf5(opts.input_fp): # metadata are not deserializing correctly. Duct tape it. update_d = {} for i, md in zip(table.ids(axis='observation'), table.metadata(axis='observation')): update_d[i] = {k: json.loads(v[0]) for k, v in md.items()} table.add_metadata(update_d, axis='observation') result = table.collapse(collapse_f, axis='observation', one_to_many=True, norm=False, one_to_many_md_key=opts.metadata_category) if (opts.format_tab_delimited): f = open(opts.output_fp, 'w') f.write( result.to_tsv(header_key=opts.metadata_category, header_value=opts.metadata_category, metadata_formatter=lambda s: '; '.join(s))) f.close() else: format_fs = {opts.metadata_category: vlen_list_of_str_formatter} write_biom_table(result, opts.output_fp, format_fs=format_fs)
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) if opts.level <= 0: option_parser.error("level must be greater than zero!") collapse_f = make_collapse_f(opts.metadata_category, opts.level, opts.ignore) table = load_table(opts.input_fp) if h5py.is_hdf5(opts.input_fp): # metadata are not deserializing correctly. Duct tape it. update_d = {} for i, md in zip(table.ids(axis='observation'), table.metadata(axis='observation')): update_d[i] = {k: json.loads(v[0]) for k, v in md.items()} table.add_metadata(update_d, axis='observation') result = table.collapse(collapse_f, axis='observation', one_to_many=True, norm=False, one_to_many_md_key=opts.metadata_category) if(opts.format_tab_delimited): f = open(opts.output_fp, 'w') f.write(result.to_tsv(header_key=opts.metadata_category, header_value=opts.metadata_category, metadata_formatter=lambda s: '; '.join(s))) f.close() else: format_fs = {opts.metadata_category: vlen_list_of_str_formatter} write_biom_table(result, opts.output_fp, format_fs=format_fs)
def write_metagenome_to_file( predicted_metagenome, output_fp, tab_delimited=False, verbose_filetype_message="metagenome prediction", verbose=False, ): """Write a BIOM Table object to a file, creating the directory if needed predicted_metagenome -- a BIOM table object output_fp -- the filepath to write the output tab_delimited -- if False, write in BIOm format, otherwise write as a tab-delimited file verbose -- if True output verbose info to StdOut """ if verbose: print "Writing %s results to output file: %s" % (verbose_filetype_message, output_fp) make_output_dir_for_file(output_fp) if tab_delimited: # peek at first observation to decide on what observeration metadata # to output in tab-delimited format (obs_val, obs_id, obs_metadata) = predicted_metagenome.iter(axis="observation").next() # see if there is a metadata field that contains the "Description" # (e.g. KEGG_Description or COG_Description) h = re.compile(".*Description") metadata_names = filter(h.search, obs_metadata.keys()) if metadata_names: # use the "Description" field we found metadata_name = metadata_names[0] elif obs_metadata.keys(): # if no "Description" metadata then just output the first # observation metadata metadata_name = (obs_metadata.keys())[0] else: # if no observation metadata then don't output any metadata_name = None open(output_fp, "w").write( predicted_metagenome.to_tsv( header_key=metadata_name, header_value=metadata_name, metadata_formatter=biom_meta_to_string ) ) else: # output in BIOM format format_fs = { "KEGG_Description": picrust_formatter, "COG_Description": picrust_formatter, "KEGG_Pathways": picrust_formatter, "COG_Category": picrust_formatter, } write_biom_table(predicted_metagenome, output_fp, format_fs=format_fs)
def write_metagenome_to_file(predicted_metagenome,output_fp,\ tab_delimited=False,verbose_filetype_message="metagenome prediction",\ verbose=False): """Write a BIOM Table object to a file, creating the directory if needed predicted_metagenome -- a BIOM table object output_fp -- the filepath to write the output tab_delimited -- if False, write in BIOm format, otherwise write as a tab-delimited file verbose -- if True output verbose info to StdOut """ if verbose: print "Writing %s results to output file: %s"\ %(verbose_filetype_message,output_fp) make_output_dir_for_file(output_fp) if tab_delimited: #peek at first observation to decide on what observeration metadata #to output in tab-delimited format (obs_val,obs_id,obs_metadata)=\ predicted_metagenome.iter(axis='observation').next() #see if there is a metadata field that contains the "Description" #(e.g. KEGG_Description or COG_Description) h = re.compile('.*Description') metadata_names = filter(h.search, obs_metadata.keys()) if metadata_names: #use the "Description" field we found metadata_name = metadata_names[0] elif (obs_metadata.keys()): #if no "Description" metadata then just output the first #observation metadata metadata_name = (obs_metadata.keys())[0] else: #if no observation metadata then don't output any metadata_name = None open(output_fp,'w').write(predicted_metagenome.to_tsv(\ header_key=metadata_name,header_value=metadata_name,metadata_formatter=biom_meta_to_string)) else: #output in BIOM format format_fs = { 'KEGG_Description': picrust_formatter, 'COG_Description': picrust_formatter, 'KEGG_Pathways': picrust_formatter, 'COG_Category': picrust_formatter } write_biom_table(predicted_metagenome, output_fp, format_fs=format_fs)
def main(): option_parser, opts, args = parse_command_line_parameters(**script_info) if opts.verbose: print "Loading sequencing depth table: ", opts.input_seq_depth_file scaling_factors = {} for sample_id, depth in parse_seq_count_file(open(opts.input_seq_depth_file, "U")): scaling_factors[sample_id] = depth if opts.verbose: print "Loading count table: ", opts.input_count_table genome_table = load_table(opts.input_count_table) if opts.verbose: print "Scaling the metagenome..." scaled_metagenomes = scale_metagenomes(genome_table, scaling_factors) if opts.verbose: print "Writing results to output file: ", opts.output_metagenome_table make_output_dir_for_file(opts.output_metagenome_table) write_biom_table(scaled_metagenomes, opts.output_metagenome_table)
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) if opts.level <= 0: parser.error("level must be greater than zero!") collapse_f = make_collapse_f(opts.metadata_category, opts.level, opts.ignore) table = load_table(opts.input_fp) result = table.collapse(collapse_f, axis='observation', one_to_many=True, norm=False,one_to_many_md_key=opts.metadata_category) if(opts.format_tab_delimited): f = open(opts.output_fp,'w') f.write(result.to_tsv(header_key=opts.metadata_category, header_value=opts.metadata_category, metadata_formatter=lambda s: '; '.join(s))) f.close() else: format_fs = {opts.metadata_category: vlen_list_of_str_formatter} write_biom_table(result, opts.output_fp, format_fs=format_fs)
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) if opts.verbose: print "Loading sequencing depth table: ",opts.input_seq_depth_file scaling_factors = {} for sample_id,depth in parse_seq_count_file(open(opts.input_seq_depth_file,'U')): scaling_factors[sample_id]=depth if opts.verbose: print "Loading count table: ", opts.input_count_table genome_table = load_table(opts.input_count_table) if opts.verbose: print "Scaling the metagenome..." scaled_metagenomes = scale_metagenomes(genome_table,scaling_factors) if opts.verbose: print "Writing results to output file: ",opts.output_metagenome_table make_output_dir_for_file(opts.output_metagenome_table) write_biom_table(scaled_metagenomes, opts.output_metagenome_table)
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) #if we specify we want NSTI only then we have to calculate it first if opts.output_accuracy_metrics_only: opts.calculate_accuracy_metrics = True if opts.verbose: print "Loading tree from file:", opts.tree # Load Tree #tree = LoadTree(opts.tree) tree = load_picrust_tree(opts.tree, opts.verbose) table_headers = [] traits = {} #load the asr trait table using the previous list of functions to order the arrays if opts.reconstructed_trait_table: table_headers,traits =\ update_trait_dict_from_file(opts.reconstructed_trait_table) #Only load confidence intervals on the reconstruction #If we actually have ASR values in the analysis if opts.reconstruction_confidence: if opts.verbose: print "Loading ASR confidence data from file:",\ opts.reconstruction_confidence print "Assuming confidence data is of type:", opts.confidence_format asr_confidence_output = open(opts.reconstruction_confidence) asr_min_vals,asr_max_vals, params,column_mapping =\ parse_asr_confidence_output(asr_confidence_output,format=opts.confidence_format) if 'sigma' in params: brownian_motion_parameter = params['sigma'][0] else: brownian_motion_parameter = None if opts.verbose: print "Done. Loaded %i confidence interval values." % ( len(asr_max_vals)) print "Brownian motion parameter:", brownian_motion_parameter else: brownian_motion_parameter = None #load the trait table into a dict with organism names as keys and arrays as functions table_headers,genome_traits =\ update_trait_dict_from_file(opts.observed_trait_table,table_headers) #Combine the trait tables overwriting the asr ones if they exist in the genome trait table. traits.update(genome_traits) # Specify the attribute where we'll store the reconstructions trait_label = "Reconstruction" if opts.verbose: print "Assigning traits to tree..." # Decorate tree using the traits tree = assign_traits_to_tree(traits, tree, trait_label=trait_label) if opts.reconstruction_confidence: if opts.verbose: print "Assigning trait confidence intervals to tree..." tree = assign_traits_to_tree(asr_min_vals,tree,\ trait_label="lower_bound") tree = assign_traits_to_tree(asr_max_vals,tree,\ trait_label="upper_bound") if brownian_motion_parameter is None: if opts.verbose: print "No Brownian motion parameters loaded. Inferring these from 95% confidence intervals..." brownian_motion_parameter = get_brownian_motion_param_from_confidence_intervals(tree,\ upper_bound_trait_label="upper_bound",\ lower_bound_trait_label="lower_bound",\ trait_label=trait_label,\ confidence=0.95) if opts.verbose: print "Inferred the following rate parameters:", brownian_motion_parameter if opts.verbose: print "Collecting list of nodes to predict..." #Start by predict all tip nodes. nodes_to_predict = [tip.Name for tip in tree.tips()] if opts.verbose: print "Found %i nodes to predict." % len(nodes_to_predict) if opts.limit_predictions_to_organisms: organism_id_str = opts.limit_predictions_to_organisms ok_organism_ids = organism_id_str.split(',') ok_organism_ids = [n.strip() for n in ok_organism_ids] for f in set_label_conversion_fns(True, True): ok_organism_ids = [f(i) for i in ok_organism_ids] if opts.verbose: print "Limiting predictions to user-specified ids:",\ ",".join(ok_organism_ids) if not ok_organism_ids: raise RuntimeError(\ "Found no valid ids in input: %s. Were comma-separated ids specified on the command line?"\ % opts.limit_predictions_to_organisms) nodes_to_predict =\ [n for n in nodes_to_predict if n in ok_organism_ids] if not nodes_to_predict: raise RuntimeError(\ "Filtering by user-specified ids resulted in an empty set of nodes to predict. Are the ids on the commmand-line and tree ids in the same format? Example tree tip name: %s, example OTU id name: %s" %([tip.Name for tip in tree.tips()][0],ok_organism_ids[0])) if opts.verbose: print "After filtering organisms to predict by the ids specified on the commandline, %i nodes remain to be predicted" % ( len(nodes_to_predict)) if opts.limit_predictions_by_otu_table: if opts.verbose: print "Limiting predictions to ids in user-specified OTU table:",\ opts.limit_predictions_by_otu_table otu_table = open(opts.limit_predictions_by_otu_table, "U") #Parse OTU table for ids otu_ids =\ extract_ids_from_table(otu_table.readlines(),delimiter="\t") if not otu_ids: raise RuntimeError(\ "Found no valid ids in input OTU table: %s. Is the path correct?"\ % opts.limit_predictions_by_otu_table) nodes_to_predict =\ [n for n in nodes_to_predict if n in otu_ids] if not nodes_to_predict: raise RuntimeError(\ "Filtering by OTU table resulted in an empty set of nodes to predict. Are the OTU ids and tree ids in the same format? Example tree tip name: %s, example OTU id name: %s" %([tip.Name for tip in tree.tips()][0],otu_ids[0])) if opts.verbose: print "After filtering by OTU table, %i nodes remain to be predicted" % ( len(nodes_to_predict)) # Calculate accuracy of PICRUST for the given tree, sequenced genomes # and set of ndoes to predict accuracy_metrics = ['NSTI'] accuracy_metric_results = None if opts.calculate_accuracy_metrics: if opts.verbose: print "Calculating accuracy metrics: %s" % ( [",".join(accuracy_metrics)]) accuracy_metric_results = {} if 'NSTI' in accuracy_metrics: nsti_result,min_distances =\ calc_nearest_sequenced_taxon_index(tree,\ limit_to_tips = nodes_to_predict,\ trait_label = trait_label, verbose=opts.verbose) #accuracy_metric_results['NSTI'] = nsti_result for organism in min_distances.keys(): accuracy_metric_results[organism] = { 'NSTI': min_distances[organism] } if opts.verbose: print "NSTI:", nsti_result if opts.output_accuracy_metrics_only: #Write accuracy metrics to file if opts.verbose: print "Writing accuracy metrics to file:", opts.output_accuracy_metrics f = open(opts.output_accuracy_metrics_only, 'w+') f.write("metric\torganism\tvalue\n") lines = [] for organism in accuracy_metric_results.keys(): for metric in accuracy_metric_results[organism].keys(): lines.append('\t'.join([metric,organism,\ str(accuracy_metric_results[organism][metric])])+'\n') f.writelines(sorted(lines)) f.close() exit() if opts.verbose: print "Generating predictions using method:", opts.prediction_method if opts.weighting_method == 'exponential': #For now, use exponential weighting weight_fn = make_neg_exponential_weight_fn(e) variances = None #Overwritten by methods that calc variance confidence_intervals = None #Overwritten by methods that calc variance if opts.prediction_method == 'asr_and_weighting': # Perform predictions using reconstructed ancestral states if opts.reconstruction_confidence: predictions,variances,confidence_intervals =\ predict_traits_from_ancestors(tree,nodes_to_predict,\ trait_label=trait_label,\ lower_bound_trait_label="lower_bound",\ upper_bound_trait_label="upper_bound",\ calc_confidence_intervals = True,\ brownian_motion_parameter=brownian_motion_parameter,\ weight_fn =weight_fn,verbose=opts.verbose) else: predictions =\ predict_traits_from_ancestors(tree,nodes_to_predict,\ trait_label=trait_label,\ weight_fn =weight_fn,verbose=opts.verbose) elif opts.prediction_method == 'weighting_only': #Ignore ancestral information predictions =\ weighted_average_tip_prediction(tree,nodes_to_predict,\ trait_label=trait_label,\ weight_fn =weight_fn,verbose=opts.verbose) elif opts.prediction_method == 'nearest_neighbor': predictions = predict_nearest_neighbor(tree,nodes_to_predict,\ trait_label=trait_label,tips_only = True) elif opts.prediction_method == 'random_neighbor': predictions = predict_random_neighbor(tree,\ nodes_to_predict,trait_label=trait_label) if opts.verbose: print "Done making predictions." make_output_dir_for_file(opts.output_trait_table) out_fh = open(opts.output_trait_table, 'w') #Generate the table of biom predictions if opts.verbose: print "Converting results to .biom format for output..." biom_predictions=biom_table_from_predictions(predictions,table_headers,\ observation_metadata=None,\ sample_metadata=accuracy_metric_results,convert_to_int=False) if opts.verbose: print "Writing prediction results to file: ", opts.output_trait_table if opts.output_precalc_file_in_biom: #write biom table to file write_biom_table(biom_predictions, opts.output_trait_table) else: #convert to precalc (tab-delimited) format out_fh = open(opts.output_trait_table, 'w') out_fh.write(convert_biom_to_precalc(biom_predictions)) out_fh.close() #Write out variance information to file if variances: if opts.verbose: print "Converting variances to BIOM format" if opts.output_precalc_file_in_biom: suffix = '.biom' else: suffix = '.tab' biom_prediction_variances=biom_table_from_predictions({k:v['variance'] for k,v in variances.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base, extension = splitext(opts.output_trait_table) variance_outfile = outfile_base + "_variances" + suffix make_output_dir_for_file(variance_outfile) if opts.verbose: print "Writing variance information to file:", variance_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_variances, variance_outfile) else: open(variance_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_variances)) if confidence_intervals: if opts.verbose: print "Converting upper confidence interval values to BIOM format" biom_prediction_upper_CI=biom_table_from_predictions({k:v['upper_CI'] for k,v in confidence_intervals.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base, extension = splitext(opts.output_trait_table) upper_CI_outfile = outfile_base + "_upper_CI" + suffix make_output_dir_for_file(upper_CI_outfile) if opts.verbose: print "Writing upper confidence limit information to file:", upper_CI_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_upper_CI, upper_CI_outfile) else: open(upper_CI_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_upper_CI)) biom_prediction_lower_CI=biom_table_from_predictions({k:v['lower_CI'] for k,v in confidence_intervals.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base, extension = splitext(opts.output_trait_table) lower_CI_outfile = outfile_base + "_lower_CI" + suffix make_output_dir_for_file(lower_CI_outfile) if opts.verbose: print "Writing lower confidence limit information to file", lower_CI_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_lower_CI, lower_CI_outfile) else: open(lower_CI_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_lower_CI))
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) #if we specify we want NSTI only then we have to calculate it first if opts.output_accuracy_metrics_only: opts.calculate_accuracy_metrics=True if opts.verbose: print "Loading tree from file:", opts.tree if opts.no_round: round_opt = False else: round_opt = True # Load Tree tree = load_picrust_tree(opts.tree, opts.verbose) table_headers=[] traits={} #load the asr trait table using the previous list of functions to order the arrays if opts.reconstructed_trait_table: table_headers,traits =\ update_trait_dict_from_file(opts.reconstructed_trait_table) #Only load confidence intervals on the reconstruction #If we actually have ASR values in the analysis if opts.reconstruction_confidence: if opts.verbose: print "Loading ASR confidence data from file:",\ opts.reconstruction_confidence print "Assuming confidence data is of type:",opts.confidence_format asr_confidence_output = open(opts.reconstruction_confidence) asr_min_vals,asr_max_vals, params,column_mapping =\ parse_asr_confidence_output(asr_confidence_output,format=opts.confidence_format) if 'sigma' in params: brownian_motion_parameter = params['sigma'][0] else: brownian_motion_parameter = None if opts.verbose: print "Done. Loaded %i confidence interval values." %(len(asr_max_vals)) print "Brownian motion parameter:",brownian_motion_parameter else: brownian_motion_parameter = None #load the trait table into a dict with organism names as keys and arrays as functions table_headers,genome_traits =\ update_trait_dict_from_file(opts.observed_trait_table,table_headers) #Combine the trait tables overwriting the asr ones if they exist in the genome trait table. traits.update(genome_traits) # Specify the attribute where we'll store the reconstructions trait_label = "Reconstruction" if opts.verbose: print "Assigning traits to tree..." # Decorate tree using the traits tree = assign_traits_to_tree(traits,tree, trait_label=trait_label) if opts.reconstruction_confidence: if opts.verbose: print "Assigning trait confidence intervals to tree..." tree = assign_traits_to_tree(asr_min_vals,tree,\ trait_label="lower_bound") tree = assign_traits_to_tree(asr_max_vals,tree,\ trait_label="upper_bound") if brownian_motion_parameter is None: if opts.verbose: print "No Brownian motion parameters loaded. Inferring these from 95% confidence intervals..." brownian_motion_parameter = get_brownian_motion_param_from_confidence_intervals(tree,\ upper_bound_trait_label="upper_bound",\ lower_bound_trait_label="lower_bound",\ trait_label=trait_label,\ confidence=0.95) if opts.verbose: print "Inferred the following rate parameters:",brownian_motion_parameter if opts.verbose: print "Collecting list of nodes to predict..." #Start by predict all tip nodes. nodes_to_predict = [tip.Name for tip in tree.tips()] if opts.verbose: print "Found %i nodes to predict." % len(nodes_to_predict) if opts.limit_predictions_to_organisms: organism_id_str = opts.limit_predictions_to_organisms ok_organism_ids = organism_id_str.split(',') ok_organism_ids = [n.strip() for n in ok_organism_ids] for f in set_label_conversion_fns(True,True): ok_organism_ids = [f(i) for i in ok_organism_ids] if opts.verbose: print "Limiting predictions to user-specified ids:",\ ",".join(ok_organism_ids) if not ok_organism_ids: raise RuntimeError(\ "Found no valid ids in input: %s. Were comma-separated ids specified on the command line?"\ % opts.limit_predictions_to_organisms) nodes_to_predict =\ [n for n in nodes_to_predict if n in ok_organism_ids] if not nodes_to_predict: raise RuntimeError(\ "Filtering by user-specified ids resulted in an empty set of nodes to predict. Are the ids on the commmand-line and tree ids in the same format? Example tree tip name: %s, example OTU id name: %s" %([tip.Name for tip in tree.tips()][0],ok_organism_ids[0])) if opts.verbose: print "After filtering organisms to predict by the ids specified on the commandline, %i nodes remain to be predicted" %(len(nodes_to_predict)) if opts.limit_predictions_by_otu_table: if opts.verbose: print "Limiting predictions to ids in user-specified OTU table:",\ opts.limit_predictions_by_otu_table otu_table = open(opts.limit_predictions_by_otu_table,"U") #Parse OTU table for ids otu_ids =\ extract_ids_from_table(otu_table.readlines(),delimiter="\t") if not otu_ids: raise RuntimeError(\ "Found no valid ids in input OTU table: %s. Is the path correct?"\ % opts.limit_predictions_by_otu_table) nodes_to_predict =\ [n for n in nodes_to_predict if n in otu_ids] if not nodes_to_predict: raise RuntimeError(\ "Filtering by OTU table resulted in an empty set of nodes to predict. Are the OTU ids and tree ids in the same format? Example tree tip name: %s, example OTU id name: %s" %([tip.Name for tip in tree.tips()][0],otu_ids[0])) if opts.verbose: print "After filtering by OTU table, %i nodes remain to be predicted" %(len(nodes_to_predict)) # Calculate accuracy of PICRUST for the given tree, sequenced genomes # and set of ndoes to predict accuracy_metrics = ['NSTI'] accuracy_metric_results = None if opts.calculate_accuracy_metrics: if opts.verbose: print "Calculating accuracy metrics: %s" %([",".join(accuracy_metrics)]) accuracy_metric_results = {} if 'NSTI' in accuracy_metrics: nsti_result,min_distances =\ calc_nearest_sequenced_taxon_index(tree,\ limit_to_tips = nodes_to_predict,\ trait_label = trait_label, verbose=opts.verbose) #accuracy_metric_results['NSTI'] = nsti_result for organism in min_distances.keys(): accuracy_metric_results[organism] = {'NSTI': min_distances[organism]} if opts.verbose: print "NSTI:", nsti_result if opts.output_accuracy_metrics_only: #Write accuracy metrics to file if opts.verbose: print "Writing accuracy metrics to file:",opts.output_accuracy_metrics f = open(opts.output_accuracy_metrics_only,'w+') f.write("metric\torganism\tvalue\n") lines =[] for organism in accuracy_metric_results.keys(): for metric in accuracy_metric_results[organism].keys(): lines.append('\t'.join([metric,organism,\ str(accuracy_metric_results[organism][metric])])+'\n') f.writelines(sorted(lines)) f.close() exit() if opts.verbose: print "Generating predictions using method:",opts.prediction_method if opts.weighting_method == 'exponential': #For now, use exponential weighting weight_fn = make_neg_exponential_weight_fn(e) variances=None #Overwritten by methods that calc variance confidence_intervals=None #Overwritten by methods that calc variance if opts.prediction_method == 'asr_and_weighting': # Perform predictions using reconstructed ancestral states if opts.reconstruction_confidence: predictions,variances,confidence_intervals =\ predict_traits_from_ancestors(tree,nodes_to_predict,\ trait_label=trait_label,\ lower_bound_trait_label="lower_bound",\ upper_bound_trait_label="upper_bound",\ calc_confidence_intervals = True,\ brownian_motion_parameter=brownian_motion_parameter,\ weight_fn=weight_fn,verbose=opts.verbose, round_predictions=round_opt) else: predictions =\ predict_traits_from_ancestors(tree,nodes_to_predict,\ trait_label=trait_label,\ weight_fn =weight_fn,verbose=opts.verbose, round_predictions=round_opt) elif opts.prediction_method == 'weighting_only': #Ignore ancestral information predictions =\ weighted_average_tip_prediction(tree,nodes_to_predict,\ trait_label=trait_label,\ weight_fn =weight_fn,verbose=opts.verbose) elif opts.prediction_method == 'nearest_neighbor': predictions = predict_nearest_neighbor(tree,nodes_to_predict,\ trait_label=trait_label,tips_only = True) elif opts.prediction_method == 'random_neighbor': predictions = predict_random_neighbor(tree,\ nodes_to_predict,trait_label=trait_label) if opts.verbose: print "Done making predictions." make_output_dir_for_file(opts.output_trait_table) out_fh=open(opts.output_trait_table,'w') #Generate the table of biom predictions if opts.verbose: print "Converting results to .biom format for output..." biom_predictions=biom_table_from_predictions(predictions,table_headers,\ observation_metadata=None,\ sample_metadata=accuracy_metric_results,convert_to_int=False) if opts.verbose: print "Writing prediction results to file: ",opts.output_trait_table if opts.output_precalc_file_in_biom: #write biom table to file write_biom_table(biom_predictions, opts.output_trait_table) else: #convert to precalc (tab-delimited) format out_fh = open(opts.output_trait_table, 'w') out_fh.write(convert_biom_to_precalc(biom_predictions)) out_fh.close() #Write out variance information to file if variances: if opts.verbose: print "Converting variances to BIOM format" if opts.output_precalc_file_in_biom: suffix='.biom' else: suffix='.tab' biom_prediction_variances=biom_table_from_predictions({k:v['variance'] for k,v in variances.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base,extension = splitext(opts.output_trait_table) variance_outfile = outfile_base+"_variances"+suffix make_output_dir_for_file(variance_outfile) if opts.verbose: print "Writing variance information to file:",variance_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_variances, variance_outfile) else: open(variance_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_variances)) if confidence_intervals: if opts.verbose: print "Converting upper confidence interval values to BIOM format" biom_prediction_upper_CI=biom_table_from_predictions({k:v['upper_CI'] for k,v in confidence_intervals.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base,extension = splitext(opts.output_trait_table) upper_CI_outfile = outfile_base+"_upper_CI"+suffix make_output_dir_for_file(upper_CI_outfile) if opts.verbose: print "Writing upper confidence limit information to file:",upper_CI_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_upper_CI, upper_CI_outfile) else: open(upper_CI_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_upper_CI)) biom_prediction_lower_CI=biom_table_from_predictions({k:v['lower_CI'] for k,v in confidence_intervals.iteritems()},table_headers,\ observation_metadata=None,\ sample_metadata=None,convert_to_int=False) outfile_base,extension = splitext(opts.output_trait_table) lower_CI_outfile = outfile_base+"_lower_CI"+suffix make_output_dir_for_file(lower_CI_outfile) if opts.verbose: print "Writing lower confidence limit information to file",lower_CI_outfile if opts.output_precalc_file_in_biom: write_biom_table(biom_prediction_lower_CI, lower_CI_outfile) else: open(lower_CI_outfile,'w').write(\ convert_biom_to_precalc(biom_prediction_lower_CI))
def main(): option_parser, opts, args =\ parse_command_line_parameters(**script_info) otu_table = load_table(opts.input_otu_fp) ids_to_load = otu_table.ids(axis='observation') if(opts.input_count_fp is None): #precalc file has specific name (e.g. 16S_13_5_precalculated.tab.gz) precalc_file_name='_'.join(['16S',opts.gg_version,'precalculated.tab.gz']) input_count_table=join(get_picrust_project_dir(),'picrust','data',precalc_file_name) else: input_count_table=opts.input_count_fp if opts.verbose: print "Loading trait table: ", input_count_table ext=path.splitext(input_count_table)[1] if (ext == '.gz'): count_table_fh = gzip.open(input_count_table,'rb') else: count_table_fh = open(input_count_table,'U') if opts.load_precalc_file_in_biom: count_table = load_table(count_table_fh) else: count_table = convert_precalc_to_biom(count_table_fh, ids_to_load) #Need to only keep data relevant to our otu list ids=[] for x in otu_table.iter(axis='observation'): ids.append(str(x[1])) ob_id=count_table.ids(axis='observation')[0] filtered_otus=[] filtered_values=[] for x in ids: if count_table.exists(x, axis='sample'): filtered_otus.append(x) filtered_values.append(otu_table.data(x, axis='observation')) filtered_otu_table = Table(filtered_values, filtered_otus, otu_table.ids()) copy_numbers_filtered={} for x in filtered_otus: value = count_table.get_value_by_ids(ob_id,x) try: #data can be floats so round them and make them integers value = int(round(float(value))) except ValueError: raise ValueError,\ "Invalid type passed as copy number for OTU ID %s. Must be int-able." % (value) if value < 1: raise ValueError, "Copy numbers must be greater than or equal to 1." copy_numbers_filtered[x]={opts.metadata_identifer:value} filtered_otu_table.add_metadata(copy_numbers_filtered, axis='observation') def metadata_norm(v, i, md): return v / float(md[opts.metadata_identifer]) normalized_table = filtered_otu_table.transform(metadata_norm, axis='observation') #move Observation Metadata from original to filtered OTU table normalized_table = transfer_observation_metadata(otu_table, normalized_table, 'observation') make_output_dir_for_file(opts.output_otu_fp) write_biom_table(normalized_table, opts.output_otu_fp)
def main(): """Generate test trees given parameters""" option_parser, opts, args =\ parse_command_line_parameters(**script_info) if opts.verbose: print "Loading trait table..." input_trait_table = open(opts.input_trait_table,"U") if opts.verbose: print "Loading tree..." #PicrustNode seems to run into very slow/memory intentsive perfromance... #tree = DndParser(open(opts.input_tree),constructor=PicrustNode) tree = DndParser(open(opts.input_tree)) if opts.verbose: print "Parsing trait table..." #Find which taxa are to be used in tests #(by default trait table taxa) trait_table_header,trait_table_fields = \ parse_trait_table(input_trait_table) if opts.verbose: print "Ensuring tree and trait table labels are formatted consistently..." label_conversion_fns = set_label_conversion_fns(verbose=opts.verbose) fix_tree_labels(tree,label_conversion_fns) trait_table_fields = convert_trait_table_entries(trait_table_fields,\ value_conversion_fns = [],\ label_conversion_fns = label_conversion_fns) trait_table_fields = [t for t in trait_table_fields] print "Number of trait table fields with single quotes:",\ len([t for t in trait_table_fields if "'" in t[0]]) if opts.verbose: print "Making output directory..." make_output_dir(opts.output_dir) if opts.limit_to_tips: included_tips = opts.limit_to_tips.split(",") if opts.verbose: print "Limiting test datasets to %i tips: %s" %(len(included_tips),included_tips) else: included_tips = False method_fns =\ {"exclude_tips_by_distance":\ make_distance_based_exclusion_fn,\ "randomize_tip_labels_by_distance":\ make_distance_based_tip_label_randomizer } test_fn_factory = method_fns[opts.method] if opts.verbose: print "Setting tree modification method to:", opts.method print "(%s)" % test_fn_factory.__doc__ modify_tree = True if opts.suppress_tree_modification: if opts.verbose: print "Suppressing modification of tree when making test datasets" modify_tree = False if opts.verbose: print "Starting generation of test datsets" test_datasets = \ yield_genome_test_data_by_distance(tree,trait_table_fields,\ test_fn_factory,min_dist = opts.min_dist,\ max_dist=opts.max_dist,increment=opts.dist_increment,\ modify_tree=modify_tree,limit_to_tips= included_tips,verbose = opts.verbose) if opts.verbose: print "Writing files for test datasets" for curr_dist,test_tree,tip_to_predict,\ expected_traits,test_trait_table_fields in test_datasets: if included_tips is not False: if tip_to_predict not in included_tips: if opts.verbose: print "Skipping tip %s: limiting to tip(s): %s" %(tip_to_predict,included_tips) continue #Make a safe version of tip to predict # So odd characters like | don't mess up OS safe_tip_to_predict = "'%s'"%tip_to_predict #Write tree base_name = "--".join(map(str,["test_tree",opts.method,curr_dist])) curr_filepath = write_tree(opts.output_dir,base_name,test_tree,safe_tip_to_predict) if opts.verbose: print "Wrote test tree to: %s" % curr_filepath #Write expected trait table base_name = "--".join(map(str,["exp_traits",opts.method,curr_dist,safe_tip_to_predict])) exp_trait_table_lines = [trait_table_header] exp_trait_table_lines.append("\t".join(expected_traits)+"\n") #print "Expected_trait_table_lines:",exp_trait_table_lines filename=os.path.join(opts.output_dir,base_name) if opts.verbose: print "Writing expected trait table to:", filename f=open(filename,"w") f.write("".join(exp_trait_table_lines)) f.close() #Output a transposed, BIOM format expectation table for comparison with predict_traits output #NOTE: this is a clumsy way of getting the translated trait table # but more elegant, direct methods (directly feeding data to biom's table_factory) # weren't working for me readily. In the future, we should streamline this process # Leaving as is for now since this code is mostly for developers so speed/elegence # are probably not essential here. #Let the hackishness begin #Reload the tab-delimited trait table header, fields = parse_trait_table(open(filename,"U")) fields = [f for f in fields] #converts generator to list #Transpose table for .BIOM format so that Observation ids are KOs transposed_header, transposed_trait_table_lines =\ transpose_trait_table_fields(fields,header,\ id_row_idx=0, input_header_delimiter="\t",output_delimiter="\t") #Eliminate newline in header trans_trait_table_lines = [transposed_header.strip()] trans_trait_table_lines.extend(["\t".join(r) for r in transposed_trait_table_lines]) trans_trait_table = '\n'.join(trans_trait_table_lines) #Write BIOM format expected trait table base_name = "--".join(map(str,["exp_biom_traits",opts.method,curr_dist,safe_tip_to_predict])) expected_biom_table = parse_table_to_biom(trans_trait_table.split('\n'),\ table_format = "tab-delimited") #print "Expected_trait_table_lines:",exp_trait_table_lines filename=os.path.join(opts.output_dir,base_name) if opts.verbose: print "Writing BIOM-format expected trait table to:", filename write_biom_table(expected_biom_table, filename) #Write test trait table test_trait_table_fields = test_trait_table_fields if expected_traits in test_trait_table_fields: test_trait_table_fields.remove(expected_traits) test_trait_table_lines = [trait_table_header] test_trait_table_lines.extend(["\t".join(r)+"\n" for r in test_trait_table_fields]) #print "Test_trait_table_lines:",test_trait_table_lines base_name = "--".join(map(str,["test_trait_table",opts.method,curr_dist,safe_tip_to_predict])) filename=os.path.join(opts.output_dir,base_name) if opts.verbose: print "Writing test trait table to:", filename f=open(filename,"w") f.write("".join(test_trait_table_lines)) f.close() if opts.verbose: print "Done generating test datasets"
def main(): option_parser, opts, args = parse_command_line_parameters(**script_info) otu_table = load_table(opts.input_otu_fp) ids_to_load = otu_table.ids(axis="observation") if opts.input_count_fp is None: # precalc file has specific name (e.g. 16S_13_5_precalculated.tab.gz) precalc_file_name = "_".join(["16S", opts.gg_version, "precalculated.tab.gz"]) input_count_table = join(get_picrust_project_dir(), "picrust", "data", precalc_file_name) else: input_count_table = opts.input_count_fp if opts.verbose: print "Loading trait table: ", input_count_table ext = path.splitext(input_count_table)[1] if ext == ".gz": count_table_fh = gzip.open(input_count_table, "rb") else: count_table_fh = open(input_count_table, "U") if opts.load_precalc_file_in_biom: count_table = load_table(count_table_fh) else: count_table = convert_precalc_to_biom(count_table_fh, ids_to_load) # Need to only keep data relevant to our otu list ids = [] for x in otu_table.iter(axis="observation"): ids.append(str(x[1])) ob_id = count_table.ids(axis="observation")[0] filtered_otus = [] filtered_values = [] for x in ids: if count_table.exists(x, axis="sample"): filtered_otus.append(x) filtered_values.append(otu_table.data(x, axis="observation")) filtered_otu_table = Table(filtered_values, filtered_otus, otu_table.ids()) copy_numbers_filtered = {} for x in filtered_otus: value = count_table.get_value_by_ids(ob_id, x) try: # data can be floats so round them and make them integers value = int(round(float(value))) except ValueError: raise ValueError, "Invalid type passed as copy number for OTU ID %s. Must be int-able." % (value) if value < 1: raise ValueError, "Copy numbers must be greater than or equal to 1." copy_numbers_filtered[x] = {opts.metadata_identifer: value} filtered_otu_table.add_metadata(copy_numbers_filtered, axis="observation") def metadata_norm(v, i, md): return v / float(md[opts.metadata_identifer]) normalized_table = filtered_otu_table.transform(metadata_norm, axis="observation") # move Observation Metadata from original to filtered OTU table normalized_table = transfer_observation_metadata(otu_table, normalized_table, "observation") make_output_dir_for_file(opts.output_otu_fp) write_biom_table(normalized_table, opts.output_otu_fp)