def test_train_test_split(self): client = Client(api_token="57c60ade109be36ef1a1c89f56247109fa448741") client.checkout_project( project_token="4b003477-3b31-4f74-8952-8a9dc879b0ec") client.create_network(network_name="test_creation_network_0") client.dl_annotations() client.train_test_split(prop=0.7) self.assertEqual(len(client.index_url), len(client.dict_annotations["images"])) self.assertEqual(len(client.train_list), len(client.train_list_id)) self.assertEqual(len(client.eval_list), len(client.eval_list_id))
def test_dl_annotations(self): client = Client(api_token="57c60ade109be36ef1a1c89f56247109fa448741") client.checkout_project( project_token="4b003477-3b31-4f74-8952-8a9dc879b0ec") client.dl_annotations() self.assertTrue(len(client.dict_annotations.keys()) != 0)
def test_create_dataset(self): client = Client(api_token="57c60ade109be36ef1a1c89f56247109fa448741") ds_id = client.create_dataset(dataset_name="test_dataset_0") self.assertTrue(isinstance(ds_id, str)) with self.assertRaises(ValueError): client = Client( api_token="57c60ade109be36ef1a1c89f56247109fa448741") ds_id = client.create_dataset(dataset_name="test_dataset_0") def test_upload_and_create_dataset(self): client = Client(api_token="57c60ade109be36ef1a1c89f56247109fa448741") client = client.create_and_upload_dataset( dataset_name="test_dataset_1", path_to_images="test_images/") if __name__ == '__main__': #unittest.main() client = Client(api_token="57c60ade109be36ef1a1c89f56247109fa448741") client.checkout_project( project_token="d8e65668-9e18-421e-966c-7daa8d7c7497") model_name = "ssd_base" client.checkout_network(model_name) client.dl_annotations() client.dl_pictures() client.train_test_split() client.generate_labelmap() a = client.tf_vars_generator(client.label_map, annotation_type="rectangle") x = next(a) print(x[:4])