def adjust_one(the_ragion): # the_ragion = cv2.GaussianBlur(the_ragion, ksize=(5,5), sigmaX=0) # blockSize = the_ragion.shape[1]/2 # if blockSize % 2 == 0: # blockSize += 1 # thresholded_ragion = cv2.adaptiveThreshold(the_ragion,WHITE, # cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, blockSize=blockSize, C=2) # thresholded_ragion = Image.threshold_white_with_mean_percent(the_ragion, 0.70) threshold_value = Ragion.cal_threshold_value(the_ragion, square_ragion, 0.70) thresholded_ragion = Image.threshold_white(the_ragion, threshold_value) return thresholded_ragion
# # Display.image(gray_image) with test("get clear number ragion"): som_svm = MultipleSvm.load_variables(Smo, data_file_helper.SUPPLEMENT_RESULT_PATH) file_path = Resource.get_test_path("sample_15_null_38_image.jpg") the_ragion = cv2.imread(file_path, 0) # the_ragion.mean().ppl() # the_ragion.ppl() # thresholded_ragion = Image.threshold_white_with_mean_percent(the_ragion, 0.8) # thresholded_ragion.ppl() # Display.image(thresholded_ragion) file_path = Resource.get_test_path("sample_15_square.jpg") square_ragion = cv2.imread(file_path, 0) # square_ragion.mean().ppl() threshold_value = Ragion.cal_threshold_value(the_ragion, square_ragion, 0.69) thresholded_ragion = Image.threshold_white(the_ragion, threshold_value) # thresholded_ragion = cv2.adaptiveThreshold(the_ragion, 255, # cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, blockSize=7, C=2) cell_rect = nonzero_rect.analyze_from_center(thresholded_ragion) if cell_rect: cell_ragion = Rect.get_ragion(cell_rect, thresholded_ragion) cell_rect.pl() # Display.image(cell_ragion) file_path = Resource.get_test_path("sample_19_07_05_image.jpg") the_ragion = cv2.imread(file_path, 0) # the_ragion.mean().ppl() file_path = Resource.get_test_path("sample_19_square.jpg") square_ragion = cv2.imread(file_path, 0)