def intent_func(): global global_smo_svm if global_smo_svm==None: # global_smo_svm.ppl() logger.info("The path of training result: {0}".format(RESULT_PATH)) global_smo_svm = MultipleSvm.load_variables(Smo, RESULT_PATH) number_indexs, digits = get_digits(pic_file_path, global_smo_svm) return main_answer.answer_quiz_with_indexs_and_digits(number_indexs, digits)
def digit_recognize(): mb = MultipleSvm.load_variables(Smo, RESULT_PATH) # file_path = '../resource/svm_wrong_digits/pic04_no17_real8_cal3.dataset' file_path = '../resource/svm_wrong_digits/pic04_no33_real8_cal3.dataset' # file_path = '../resource/svm_wrong_digits/pic15_no19_real5_cal6_1.dataset' # file_path = '../resource/svm_wrong_digits/pic15_no19_real5_cal6.dataset' number_ragion = numpy.mat(Image.read_from_number_file(file_path)) transfered_ragion = numpy_helper.transfer_1to255(number_ragion) # adjusted_ragion = main_sudoku.adjust_number_ragion(transfered_ragion) adjusted_ragion = adjust_number_ragion2(transfered_ragion) # adjusted_ragion = transfered_ragion Display.ragions([transfered_ragion, adjusted_ragion]) adjusted_ragion = numpy_helper.transfer_255to1(adjusted_ragion) number_matrix = main_sudoku.transfer_to_digit_matrix(adjusted_ragion) mb.dag_classify(number_matrix).ppl()
def vertify_all_pics(): pic_data = gen_pic_test_data() # hand_result_path = '../resource/digit_recognition/hand_dataset' smo_svm = MultipleSvm.load_variables(Smo, RESULT_PATH) def handle_one(i, extend_name='jpg'): pic_file_path = '../resource/example_pics/sample'+str(i).zfill(2)+'.dataset.'+extend_name actual = main_sudoku.get_digits(pic_file_path, smo_svm, True) difference = print_and_get_difference(actual, pic_data[i], i) show_difference(pic_file_path, actual, difference) return True # handle_one(1) 8 ,15 # map(handle_one, range(1,19)) # handle_one(90, 'png') # handle_one(19) handle_one(15)
# main_sudoku.answer_quiz_with_pic(image_path).pl() # # gray_image = cv2.imread(image_path, 0) # # Display.image(gray_image) # # /Users/colin/work/picture_sudoku/other_resource/font_training_result # with test("for having more than two border lines"): # # image_path = Resource.get_path('example_pics/sample11.dataset.jpg') # # image_path = Resource.get_path('example_pics/sample08.dataset.jpg') # # image_path = Resource.get_path('example_pics/sample16.dataset.jpg') # image_path = Resource.get_path('for_issues/cannot_recognize.jpg') # main_sudoku.answer_quiz_with_pic(image_path).pl() # # gray_image = cv2.imread(image_path, 0) # # Display.image(gray_image) with test("get clear number ragion"): som_svm = MultipleSvm.load_variables(Smo, data_file_helper.SUPPLEMENT_RESULT_PATH) file_path = Resource.get_test_path("sample_15_null_38_image.jpg") the_ragion = cv2.imread(file_path, 0) # the_ragion.mean().ppl() # the_ragion.ppl() # thresholded_ragion = Image.threshold_white_with_mean_percent(the_ragion, 0.8) # thresholded_ragion.ppl() # Display.image(thresholded_ragion) file_path = Resource.get_test_path("sample_15_square.jpg") square_ragion = cv2.imread(file_path, 0) # square_ragion.mean().ppl() threshold_value = Ragion.cal_threshold_value(the_ragion, square_ragion, 0.69) thresholded_ragion = Image.threshold_white(the_ragion, threshold_value) # thresholded_ragion = cv2.adaptiveThreshold(the_ragion, 255, # cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY_INV, blockSize=7, C=2)