예제 #1
0
파일: plots.py 프로젝트: kmsouthard/trackpy
def annotate3d(centroids, image, **kwargs):
    """
    An extension of annotate that annotates a 3D image and returns a scrollable
    stack for display in IPython. Parameters: see annotate.
    """
    if plots_to_frame is None:
        raise ImportError('annotate3d requires pims 0.3 or later, please '
                          'update pims')

    import matplotlib as mpl
    import matplotlib.pyplot as plt

    if image.ndim != 3 and not (image.ndim == 4 and image.shape[-1] in (3, 4)):
        raise ValueError("image has incorrect dimensions. Please input a 3D "
                         "grayscale or RGB(A) image. For 2D image annotation, "
                         "use annotate. Multichannel images can be "
                         "converted to RGB using pims.display.to_rgb.")

    # We want to normalize on the full image and stop imshow from normalizing.
    normalized = (normalize(image) * 255).astype(np.uint8)
    imshow_style = dict(vmin=0, vmax=255)
    if '_imshow_style' in kwargs:
        kwargs['imshow_style'].update(imshow_style)
    else:
        kwargs['imshow_style'] = imshow_style

    # Suppress warning when >20 figures are opened
    max_open_warning = mpl.rcParams['figure.max_open_warning']
    mpl.rc('figure', max_open_warning=0)
    figures = []
    for i, imageZ in enumerate(normalized):
        fig = plt.figure()
        kwargs['ax'] = fig.gca()
        centroidsZ = centroids[(centroids['z'] > i - 0.5) &
                               (centroids['z'] < i + 0.5)]
        annotate(centroidsZ, imageZ, **kwargs)
        figures.append(fig)

    result = plots_to_frame(figures, width=512, bbox_inches='tight')

    for fig in figures:
        plt.close(fig)
    mpl.rc('figure', max_open_warning=max_open_warning)
    return result
예제 #2
0
def annotate3d(centroids, image, **kwargs):
    """Annotates a 3D image and returns a scrollable stack for display in
    IPython.
    
    Parameters
    ----------
    centroids : DataFrame including columns x and y
    image : image array (or string path to image file)
    circle_size : Deprecated.
        This will be removed in a future version of trackpy.
        Use `plot_style={'markersize': ...}` instead.
    color : single matplotlib color or a list of multiple colors
        default None
    invert : If you give a filepath as the image, specify whether to invert
        black and white. Default True.
    ax : matplotlib axes object, defaults to current axes
    split_category : string, parameter to use to split the data into sections
        default None
    split_thresh : single value or list of ints or floats to split
        particles into sections for plotting in multiple colors.
        List items should be ordered by increasing value.
        default None
    imshow_style : dictionary of keyword arguments passed through to
        the `Axes.imshow(...)` command the displays the image
    plot_style : dictionary of keyword arguments passed through to
        the `Axes.plot(...)` command that marks the features

    Returns
    -------
    pims.Frame object containing a three-dimensional RGBA image

    See Also
    --------
    annotate : annotation of 2D images
    """
    if plots_to_frame is None:
        raise ImportError('annotate3d requires pims 0.3 or later. Please '
                          'install/update pims')

    import matplotlib as mpl
    import matplotlib.pyplot as plt

    if image.ndim != 3 and not (image.ndim == 4 and image.shape[-1] in (3, 4)):
        raise ValueError("image has incorrect dimensions. Please input a 3D "
                         "grayscale or RGB(A) image. For 2D image annotation, "
                         "use annotate. Multichannel images can be "
                         "converted to RGB using pims.display.to_rgb.")

    # We want to normalize on the full image and stop imshow from normalizing.
    normalized = (normalize(image) * 255).astype(np.uint8)
    imshow_style = dict(vmin=0, vmax=255)
    if '_imshow_style' in kwargs:
        kwargs['imshow_style'].update(imshow_style)
    else:
        kwargs['imshow_style'] = imshow_style

    max_open_warning = mpl.rcParams['figure.max_open_warning']
    was_interactive = plt.isinteractive()
    try:
        # Suppress warning when many figures are opened
        mpl.rc('figure', max_open_warning=0)
        # Turn off interactive mode (else the closed plots leave emtpy space)
        plt.ioff()

        figures = [None] * len(normalized)
        for i, imageZ in enumerate(normalized):
            fig = plt.figure()
            kwargs['ax'] = fig.gca()
            centroidsZ = centroids[(centroids['z'] > i - 0.5)
                                   & (centroids['z'] < i + 0.5)]
            annotate(centroidsZ, imageZ, **kwargs)
            figures[i] = fig

        result = plots_to_frame(figures,
                                width=512,
                                close_fig=True,
                                bbox_inches='tight')
    finally:
        # put matplotlib back in original state
        if was_interactive:
            plt.ion()
        mpl.rc('figure', max_open_warning=max_open_warning)

    return result
예제 #3
0
파일: plots.py 프로젝트: acorbe/trackpy
def annotate3d(centroids, image, **kwargs):
    """Annotates a 3D image and returns a scrollable stack for display in
    IPython.
    
    Parameters
    ----------
    centroids : DataFrame including columns x and y
    image : image array (or string path to image file)
    circle_size : Deprecated.
        This will be removed in a future version of trackpy.
        Use `plot_style={'markersize': ...}` instead.
    color : single matplotlib color or a list of multiple colors
        default None
    invert : If you give a filepath as the image, specify whether to invert
        black and white. Default True.
    ax : matplotlib axes object, defaults to current axes
    split_category : string, parameter to use to split the data into sections
        default None
    split_thresh : single value or list of ints or floats to split
        particles into sections for plotting in multiple colors.
        List items should be ordered by increasing value.
        default None
    imshow_style : dictionary of keyword arguments passed through to
        the `Axes.imshow(...)` command the displays the image
    plot_style : dictionary of keyword arguments passed through to
        the `Axes.plot(...)` command that marks the features

    Returns
    -------
    pims.Frame object containing a three-dimensional RGBA image

    See Also
    --------
    annotate : annotation of 2D images
    """
    if plots_to_frame is None:
        raise ImportError('annotate3d requires pims 0.3 or later, please '
                          'update pims')

    import matplotlib as mpl
    import matplotlib.pyplot as plt

    if image.ndim != 3 and not (image.ndim == 4 and image.shape[-1] in (3, 4)):
        raise ValueError("image has incorrect dimensions. Please input a 3D "
                         "grayscale or RGB(A) image. For 2D image annotation, "
                         "use annotate. Multichannel images can be "
                         "converted to RGB using pims.display.to_rgb.")

    # We want to normalize on the full image and stop imshow from normalizing.
    normalized = (normalize(image) * 255).astype(np.uint8)
    imshow_style = dict(vmin=0, vmax=255)
    if '_imshow_style' in kwargs:
        kwargs['imshow_style'].update(imshow_style)
    else:
        kwargs['imshow_style'] = imshow_style

    max_open_warning = mpl.rcParams['figure.max_open_warning']
    was_interactive = plt.isinteractive()
    try:
        # Suppress warning when many figures are opened
        mpl.rc('figure', max_open_warning=0)
        # Turn off interactive mode (else the closed plots leave emtpy space)
        plt.ioff()

        figures = [None] * len(normalized)
        for i, imageZ in enumerate(normalized):
            fig = plt.figure()
            kwargs['ax'] = fig.gca()
            centroidsZ = centroids[(centroids['z'] > i - 0.5) &
                                   (centroids['z'] < i + 0.5)]
            annotate(centroidsZ, imageZ, **kwargs)
            figures[i] = fig

        result = plots_to_frame(figures, width=512, close_fig=True,
                                bbox_inches='tight')
    finally:
        # put matplotlib back in original state
        if was_interactive:
            plt.ion()
        mpl.rc('figure', max_open_warning=max_open_warning)

    return result
예제 #4
0
 def test_plots_from_generator(self):
     frame = plots_to_frame(iter(self.figures))
     assert_equal(frame.shape, (10, 384, 512, 4))
예제 #5
0
 def test_plots_width(self):
     width = np.random.randint(100, 1000)
     frame = plots_to_frame(self.figures, width)
     assert_equal(frame.shape[2], width)
예제 #6
0
 def test_plots_resize(self):
     frame = plots_to_frame(self.figures, fig_size_inches=(4, 4))
     assert_equal(frame.shape, (10, 512, 512, 4))
예제 #7
0
 def test_plots_tight(self):
     frame = plots_to_frame(self.figures, bbox_inches='tight')
     assert_equal(frame.shape, (10, 384, 512, 4))
예제 #8
0
 def test_plots_to_frame(self):
     frame = plots_to_frame(self.figures)
     assert_equal(frame.shape, (10, 384, 512, 4))
예제 #9
0
파일: test_display.py 프로젝트: nkeim/pims
 def test_plots_resize(self):
     frame = plots_to_frame(self.figures, fig_size_inches=(4, 4))
     assert_equal(frame.shape, (10, 512, 512, 4))
예제 #10
0
파일: test_display.py 프로젝트: nkeim/pims
 def test_plots_tight(self):
     frame = plots_to_frame(self.figures, bbox_inches='tight')
     assert_less(frame.shape[1:3], (384, 512))
예제 #11
0
파일: test_display.py 프로젝트: nkeim/pims
 def test_plots_to_frame(self):
     frame = plots_to_frame(self.figures)
     assert_equal(frame.shape, (10, 384, 512, 4))
예제 #12
0
파일: test_display.py 프로젝트: nkeim/pims
 def test_plots_from_generator(self):
     frame = plots_to_frame(iter(self.figures))
     assert_equal(frame.shape, (10, 384, 512, 4))
예제 #13
0
파일: test_display.py 프로젝트: nkeim/pims
 def test_plots_width(self):
     width = np.random.randint(100, 1000)
     frame = plots_to_frame(self.figures, width)
     assert_equal(frame.shape[2], width)
예제 #14
0
 def test_plots_tight(self):
     frame = plots_to_frame(self.figures, bbox_inches='tight')
     assert_less(frame.shape[1:3], (384, 512))
예제 #15
0
 def test_axes_to_frame(self):
     frame = plots_to_frame(self.axes)
     self.assertEqual(frame.shape, (10, 384, 512, 4))
예제 #16
0
 def test_plots_tight(self):
     frame = plots_to_frame(self.figures, bbox_inches='tight')
     assert_equal(frame.shape, (10, 384, 512, 4))