예제 #1
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    backend = config.backend
    work_mode = config.work_mode

    # data sets
    guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest, host=host,)

    # set data reader and data-io

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role="guest", party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role="host", party_id=host).component_param(table=host_train_data)
    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role="guest", party_id=guest).component_param(with_label=True, output_format="dense")
    dataio_0.get_party_instance(role="host", party_id=host).component_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(name="hetero_secure_boost_0",
                                              num_trees=3,
                                              task_type="classification",
                                              objective_param={"objective": "cross_entropy"},
                                              encrypt_param={"method": "iterativeAffine"},
                                              tree_param={"max_depth": 3},
                                              validation_freqs=1,
                                              cv_param={
                                                  "need_cv": True,
                                                  "n_splits": 5,
                                                  "shuffle": False,
                                                  "random_seed": 103
                                              }
                                              )

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data))

    pipeline.compile()
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)

    print("fitting hetero secureboost done, result:")
    print(pipeline.get_component("hetero_secure_boost_0").get_summary())
예제 #2
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": "experiment"
    }
    guest_test_data = {
        "name": "breast_hetero_guest",
        "namespace": "experiment"
    }
    host_train_data = {
        "name": "breast_hetero_host_tag_value",
        "namespace": "experiment"
    }
    host_test_data = {
        "name": "breast_hetero_host_tag_value",
        "namespace": "experiment"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    reader_1 = Reader(name="reader_1")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_1.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_test_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)
    reader_1.get_party_instance(
        role='host', party_id=host).component_param(table=host_test_data)

    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0
    dataio_1 = DataIO(name="dataio_1")  # start component numbering at 1

    param = {
        "with_label": True,
        "label_name": "y",
        "label_type": "int",
        "output_format": "dense",
        "missing_fill": True,
        "missing_fill_method": "mean",
        "outlier_replace": False,
        "outlier_replace_method": "designated",
        "outlier_replace_value": 0.66,
        "outlier_impute": "-9999"
    }
    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role='guest',
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.component_param(**param)
    # get and configure DataIO party instance of host
    dataio_1.get_party_instance(role='guest',
                                party_id=guest).component_param(**param)

    param = {
        "input_format": "tag",
        "with_label": False,
        "tag_with_value": True,
        "delimitor": ";",
        "output_format": "dense"
    }
    dataio_0.get_party_instance(role='host',
                                party_id=host).component_param(**param)
    dataio_1.get_party_instance(role='host',
                                party_id=host).component_param(**param)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0",
                                  intersect_method="raw")
    intersection_1 = Intersection(name="intersection_1",
                                  intersect_method="raw")

    param = {
        "name": 'hetero_feature_binning_0',
        "method": 'optimal',
        "optimal_binning_param": {
            "metric_method": "iv",
            "init_bucket_method": "quantile"
        },
        "bin_indexes": -1
    }
    hetero_feature_binning_0 = HeteroFeatureBinning(**param)
    statistic_0 = DataStatistics(name='statistic_0')
    param = {
        "name":
        'hetero_feature_selection_0',
        "filter_methods":
        ["manually", "unique_value", "iv_filter", "statistic_filter"],
        "manually_param": {
            "filter_out_indexes": [1, 2],
            "filter_out_names": ["x2", "x3"]
        },
        "unique_param": {
            "eps": 1e-6
        },
        "iv_param": {
            "metrics": ["iv", "iv"],
            "filter_type": ["top_k", "threshold"],
            "take_high": [True, True],
            "threshold": [10, 0.1]
        },
        "statistic_param": {
            "metrics": ["coefficient_of_variance", "skewness"],
            "filter_type": ["threshold", "threshold"],
            "take_high": [True, False],
            "threshold": [0.001, -0.01]
        },
        "select_col_indexes":
        -1
    }
    hetero_feature_selection_0 = HeteroFeatureSelection(**param)
    hetero_feature_selection_1 = HeteroFeatureSelection(
        name='hetero_feature_selection_1')

    param = {
        "task_type": "classification",
        "learning_rate": 0.1,
        "num_trees": 10,
        "subsample_feature_rate": 0.5,
        "n_iter_no_change": False,
        "tol": 0.0002,
        "bin_num": 50,
        "objective_param": {
            "objective": "cross_entropy"
        },
        "encrypt_param": {
            "method": "paillier"
        },
        "predict_param": {
            "threshold": 0.5
        },
        "tree_param": {
            "max_depth": 2
        },
        "cv_param": {
            "n_splits": 5,
            "shuffle": False,
            "random_seed": 103,
            "need_cv": False
        },
        "validation_freqs": 2,
        "early_stopping_rounds": 5,
        "metrics": ["auc", "ks"]
    }

    hetero_secureboost_0 = HeteroSecureBoost(name='hetero_secureboost_0',
                                             **param)
    evaluation_0 = Evaluation(name='evaluation_0')
    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(dataio_0.output.model))

    # set data input sources of intersection components
    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersection_1,
                           data=Data(data=dataio_1.output.data))

    pipeline.add_component(hetero_feature_binning_0,
                           data=Data(data=intersection_0.output.data))

    pipeline.add_component(statistic_0,
                           data=Data(data=intersection_0.output.data))

    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=intersection_0.output.data),
        model=Model(isometric_model=[
            hetero_feature_binning_0.output.model, statistic_0.output.model
        ]))
    pipeline.add_component(hetero_feature_selection_1,
                           data=Data(data=intersection_1.output.data),
                           model=Model(
                               hetero_feature_selection_0.output.model))

    # set train & validate data of hetero_secureboost_0 component
    pipeline.add_component(
        hetero_secureboost_0,
        data=Data(train_data=hetero_feature_selection_0.output.data,
                  validate_data=hetero_feature_selection_1.output.data))

    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_secureboost_0.output.data))
    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    print(pipeline.get_component("hetero_secureboost_0").get_summary())
예제 #3
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    backend = config.backend
    work_mode = config.work_mode

    # data sets
    guest_train_data = {"name": "student_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "student_hetero_host", "namespace": f"experiment{namespace}"}

    guest_validate_data = {"name": "student_hetero_guest", "namespace": f"experiment{namespace}"}
    host_validate_data = {"name": "student_hetero_host", "namespace": f"experiment{namespace}"}

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest", party_id=guest).set_roles(guest=guest, host=host,)

    # set data reader and data-io

    reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1")
    reader_0.get_party_instance(role="guest", party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(role="host", party_id=host).algorithm_param(table=host_train_data)
    reader_1.get_party_instance(role="guest", party_id=guest).algorithm_param(table=guest_validate_data)
    reader_1.get_party_instance(role="host", party_id=host).algorithm_param(table=host_validate_data)

    dataio_0, dataio_1 = DataIO(name="dataio_0"), DataIO(name="dataio_1")

    dataio_0.get_party_instance(role="guest", party_id=guest).algorithm_param(with_label=True, output_format="dense")
    dataio_0.get_party_instance(role="host", party_id=host).algorithm_param(with_label=False)
    dataio_1.get_party_instance(role="guest", party_id=guest).algorithm_param(with_label=True, output_format="dense")
    dataio_1.get_party_instance(role="host", party_id=host).algorithm_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(name="hetero_secure_boost_0",
                                              num_trees=5,
                                              task_type="regression",
                                              objective_param={"objective": "lse"},
                                              encrypt_param={"method": "iterativeAffine"},
                                              tree_param={"max_depth": 3},
                                              validation_freqs=1,
                                              early_stopping_rounds=1)

    # evaluation component
    evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1, data=Data(data=reader_1.output.data), model=Model(dataio_0.output.model))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersect_1, data=Data(data=dataio_1.output.data))
    pipeline.add_component(hetero_secure_boost_0, data=Data(train_data=intersect_0.output.data,
                                                            validate_data=intersect_1.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_secure_boost_0.output.data))

    pipeline.compile()
    pipeline.fit(backend=backend, work_mode=work_mode)

    print("fitting hetero secureboost done, result:")
    print(pipeline.get_component("hetero_secure_boost_0").get_summary())
예제 #4
0
파일: common_tools.py 프로젝트: zpskt/FATE
def make_normal_dsl(config,
                    namespace,
                    selection_param,
                    is_multi_host=False,
                    host_dense_output=True,
                    **kwargs):
    parties = config.parties
    guest = parties.guest[0]
    if is_multi_host:
        hosts = parties.host
    else:
        hosts = parties.host[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    guest_eval_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_eval_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=hosts).component_param(table=host_train_data)

    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0

    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role='guest',
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.component_param(with_label=True,
                                                  output_format="dense")
    # get and configure DataIO party instance of host
    dataio_0.get_party_instance(
        role='host', party_id=hosts).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")
    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))

    last_cpn = intersection_0
    selection_include_model = []
    if 'binning_param' in kwargs:
        hetero_feature_binning_0 = HeteroFeatureBinning(
            **kwargs['binning_param'])
        pipeline.add_component(hetero_feature_binning_0,
                               data=Data(data=last_cpn.output.data))
        selection_include_model.append(hetero_feature_binning_0)
        # last_cpn = hetero_feature_binning_0

    if 'statistic_param' in kwargs:
        # print(f"param: {kwargs['statistic_param']}, kwargs: {kwargs}")
        statistic_0 = DataStatistics(**kwargs['statistic_param'])
        pipeline.add_component(statistic_0,
                               data=Data(data=last_cpn.output.data))
        # last_cpn = statistic_0
        selection_include_model.append(statistic_0)

    if 'psi_param' in kwargs:
        reader_1 = Reader(name="reader_1")
        reader_1.get_party_instance(
            role='guest',
            party_id=guest).component_param(table=guest_eval_data)
        reader_1.get_party_instance(
            role='host', party_id=hosts).component_param(table=host_eval_data)
        dataio_1 = DataIO(name="dataio_1")
        intersection_1 = Intersection(name="intersection_1")
        pipeline.add_component(reader_1)
        pipeline.add_component(dataio_1,
                               data=Data(data=reader_1.output.data),
                               model=Model(dataio_0.output.model))
        pipeline.add_component(intersection_1,
                               data=Data(data=dataio_1.output.data))

        psi_0 = PSI(**kwargs['psi_param'])
        pipeline.add_component(psi_0,
                               data=Data(
                                   train_data=intersection_0.output.data,
                                   validate_data=intersection_1.output.data))
        # last_cpn = statistic_0
        selection_include_model.append(psi_0)

    if 'sbt_param' in kwargs:
        secureboost_0 = HeteroSecureBoost(**kwargs['sbt_param'])

        pipeline.add_component(
            secureboost_0, data=Data(train_data=intersection_0.output.data))
        selection_include_model.append(secureboost_0)

    if "fast_sbt_param" in kwargs:
        fast_sbt_0 = HeteroFastSecureBoost(**kwargs['fast_sbt_param'])
        pipeline.add_component(
            fast_sbt_0, data=Data(train_data=intersection_0.output.data))
        selection_include_model.append(fast_sbt_0)

    hetero_feature_selection_0 = HeteroFeatureSelection(**selection_param)

    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=intersection_0.output.data),
        model=Model(
            isometric_model=[x.output.model for x in selection_include_model]))
    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()
    return pipeline
예제 #5
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    # data sets
    guest_train_data = {
        "name": "vehicle_scale_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "vehicle_scale_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    guest_validate_data = {
        "name": "vehicle_scale_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_validate_data = {
        "name": "vehicle_scale_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest",
                                        party_id=guest).set_roles(
                                            guest=guest,
                                            host=host,
                                        )

    # set data reader and data-io
    reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1")
    reader_0.get_party_instance(
        role="guest", party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role="host", party_id=host).component_param(table=host_train_data)
    reader_1.get_party_instance(
        role="guest",
        party_id=guest).component_param(table=guest_validate_data)
    reader_1.get_party_instance(
        role="host", party_id=host).component_param(table=host_validate_data)

    data_transform_0, data_transform_1 = DataTransform(
        name="data_transform_0"), DataTransform(name="data_transform_1")

    data_transform_0.get_party_instance(
        role="guest", party_id=guest).component_param(with_label=True,
                                                      output_format="dense")
    data_transform_0.get_party_instance(
        role="host", party_id=host).component_param(with_label=False)
    data_transform_1.get_party_instance(
        role="guest", party_id=guest).component_param(with_label=True,
                                                      output_format="dense")
    data_transform_1.get_party_instance(
        role="host", party_id=host).component_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(
        name="hetero_secure_boost_0",
        num_trees=3,
        task_type="classification",
        objective_param={"objective": "cross_entropy"},
        encrypt_param={"method": "paillier"},
        tree_param={"max_depth": 3},
        validation_freqs=1)

    # evaluation component
    evaluation_0 = Evaluation(name="evaluation_0", eval_type="multi")
    evaluation_1 = Evaluation(name="evaluation_1", eval_type="multi")

    # transformer
    transformer_0 = SBTTransformer(name='sbt_transformer_0', dense_format=True)

    # local baseline
    def get_local_baseline(idx):
        return LocalBaseline(name="local_baseline_{}".format(idx),
                             model_name="LogisticRegression",
                             model_opts={
                                 "penalty": "l2",
                                 "tol": 0.0001,
                                 "C": 1.0,
                                 "fit_intercept": True,
                                 "solver": "lbfgs",
                                 "max_iter": 50
                             })

    local_baseline_0 = get_local_baseline(0)
    local_baseline_0.get_party_instance(
        role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)

    local_baseline_1 = get_local_baseline(1)
    local_baseline_1.get_party_instance(
        role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_1.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)

    evaluation_1.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(data_transform_0.output.model))
    pipeline.add_component(intersect_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(intersect_1,
                           data=Data(data=data_transform_1.output.data))
    pipeline.add_component(hetero_secure_boost_0,
                           data=Data(train_data=intersect_0.output.data,
                                     validate_data=intersect_1.output.data))
    pipeline.add_component(
        transformer_0,
        data=Data(data=intersect_0.output.data),
        model=Model(isometric_model=hetero_secure_boost_0.output.model))
    pipeline.compile()
    pipeline.fit()
예제 #6
0
#
#  Copyright 2019 The FATE Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#


from pipeline.component.hetero_secureboost import HeteroSecureBoost


a = HeteroSecureBoost(name="hetero_secureboost_0")

print(a.output.data)
print(a.output.model)
예제 #7
0
def main(config="../../config.yaml",
         param="./xgb_config_binary.yaml",
         namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)

    if isinstance(param, str):
        param = JobConfig.load_from_file(param)

    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    backend = config.backend
    work_mode = config.work_mode

    # data sets
    guest_train_data = {
        "name": param['data_guest_train'],
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": param['data_host_train'],
        "namespace": f"experiment{namespace}"
    }
    guest_validate_data = {
        "name": param['data_guest_val'],
        "namespace": f"experiment{namespace}"
    }
    host_validate_data = {
        "name": param['data_host_val'],
        "namespace": f"experiment{namespace}"
    }

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest",
                                        party_id=guest).set_roles(
                                            guest=guest,
                                            host=host,
                                        )

    # set data reader and data-io

    reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1")
    reader_0.get_party_instance(
        role="guest", party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role="host", party_id=host).component_param(table=host_train_data)
    reader_1.get_party_instance(
        role="guest",
        party_id=guest).component_param(table=guest_validate_data)
    reader_1.get_party_instance(
        role="host", party_id=host).component_param(table=host_validate_data)

    dataio_0, dataio_1 = DataIO(name="dataio_0"), DataIO(name="dataio_1")

    dataio_0.get_party_instance(role="guest", party_id=guest).component_param(
        with_label=True, output_format="dense")
    dataio_0.get_party_instance(
        role="host", party_id=host).component_param(with_label=False)
    dataio_1.get_party_instance(role="guest", party_id=guest).component_param(
        with_label=True, output_format="dense")
    dataio_1.get_party_instance(
        role="host", party_id=host).component_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(
        name="hetero_secure_boost_0",
        num_trees=param['tree_num'],
        task_type=param['task_type'],
        objective_param={"objective": param['loss_func']},
        encrypt_param={"method": "iterativeAffine"},
        tree_param={"max_depth": param['tree_depth']},
        validation_freqs=1,
        learning_rate=param['learning_rate'])
    hetero_secure_boost_1 = HeteroSecureBoost(name="hetero_secure_boost_1")
    # evaluation component
    evaluation_0 = Evaluation(name="evaluation_0",
                              eval_type=param['eval_type'])

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(dataio_0.output.model))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersect_1, data=Data(data=dataio_1.output.data))
    pipeline.add_component(hetero_secure_boost_0,
                           data=Data(train_data=intersect_0.output.data,
                                     validate_data=intersect_1.output.data))
    pipeline.add_component(hetero_secure_boost_1,
                           data=Data(test_data=intersect_1.output.data),
                           model=Model(hetero_secure_boost_0.output.model))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_secure_boost_0.output.data))

    pipeline.compile()
    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)

    sbt_0_data = pipeline.get_component(
        "hetero_secure_boost_0").get_output_data().get("data")
    sbt_1_data = pipeline.get_component(
        "hetero_secure_boost_1").get_output_data().get("data")
    sbt_0_score = extract_data(sbt_0_data, "predict_result")
    sbt_0_label = extract_data(sbt_0_data, "label")
    sbt_1_score = extract_data(sbt_1_data, "predict_result")
    sbt_1_label = extract_data(sbt_1_data, "label")
    sbt_0_score_label = extract_data(sbt_0_data,
                                     "predict_result",
                                     keep_id=True)
    sbt_1_score_label = extract_data(sbt_1_data,
                                     "predict_result",
                                     keep_id=True)
    metric_summary = parse_summary_result(
        pipeline.get_component("evaluation_0").get_summary())
    if param['eval_type'] == "regression":
        desc_sbt_0 = regression_metric.Describe().compute(sbt_0_score)
        desc_sbt_1 = regression_metric.Describe().compute(sbt_1_score)
        metric_summary["script_metrics"] = {
            "hetero_sbt_train": desc_sbt_0,
            "hetero_sbt_validate": desc_sbt_1
        }
    elif param['eval_type'] == "binary":
        metric_sbt = {
            "score_diversity_ratio":
            classification_metric.Distribution.compute(sbt_0_score_label,
                                                       sbt_1_score_label),
            "ks_2samp":
            classification_metric.KSTest.compute(sbt_0_score, sbt_1_score),
            "mAP_D_value":
            classification_metric.AveragePrecisionScore().compute(
                sbt_0_score, sbt_1_score, sbt_0_label, sbt_1_label)
        }
        metric_summary["distribution_metrics"] = {"hetero_sbt": metric_sbt}
    elif param['eval_type'] == "multi":
        metric_sbt = {
            "score_diversity_ratio":
            classification_metric.Distribution.compute(sbt_0_score_label,
                                                       sbt_1_score_label)
        }
        metric_summary["distribution_metrics"] = {"hetero_sbt": metric_sbt}

    data_summary = {
        "train": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        },
        "test": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        }
    }

    return data_summary, metric_summary
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    backend = config.backend
    work_mode = config.work_mode

    # data sets
    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    guest_validate_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_validate_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest",
                                        party_id=guest).set_roles(
                                            guest=guest,
                                            host=host,
                                        )

    # set data reader and data-io

    reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1")
    reader_0.get_party_instance(
        role="guest", party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(
        role="host", party_id=host).algorithm_param(table=host_train_data)
    reader_1.get_party_instance(
        role="guest",
        party_id=guest).algorithm_param(table=guest_validate_data)
    reader_1.get_party_instance(
        role="host", party_id=host).algorithm_param(table=host_validate_data)

    dataio_0, dataio_1 = DataIO(name="dataio_0"), DataIO(name="dataio_1")

    dataio_0.get_party_instance(role="guest", party_id=guest).algorithm_param(
        with_label=True, output_format="dense")
    dataio_0.get_party_instance(
        role="host", party_id=host).algorithm_param(with_label=False)
    dataio_1.get_party_instance(role="guest", party_id=guest).algorithm_param(
        with_label=True, output_format="dense")
    dataio_1.get_party_instance(
        role="host", party_id=host).algorithm_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(
        name="hetero_secure_boost_0",
        num_trees=5,
        task_type="classification",
        objective_param={"objective": "cross_entropy"},
        encrypt_param={"method": "iterativeAffine"},
        tree_param={"max_depth": 3},
        validation_freqs=1)

    # evaluation component
    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(dataio_0.output.model))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersect_1, data=Data(data=dataio_1.output.data))
    pipeline.add_component(hetero_secure_boost_0,
                           data=Data(train_data=intersect_0.output.data,
                                     validate_data=intersect_1.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_secure_boost_0.output.data))

    pipeline.compile()
    pipeline.fit(backend=backend, work_mode=work_mode)

    print("fitting hetero secureboost done, result:")
    print(pipeline.get_component("hetero_secure_boost_0").get_summary())

    print('start to predict')

    # predict
    # deploy required components
    pipeline.deploy_component([dataio_0, intersect_0, hetero_secure_boost_0])

    predict_pipeline = PipeLine()
    # add data reader onto predict pipeline
    predict_pipeline.add_component(reader_0)
    # add selected components from train pipeline onto predict pipeline
    # specify data source
    predict_pipeline.add_component(
        pipeline,
        data=Data(
            predict_input={pipeline.dataio_0.input.data: reader_0.output.data
                           }))
    # run predict model
    predict_pipeline.predict(backend=backend, work_mode=work_mode)
예제 #9
0
def main(config="../../config.yaml",
         param="./xgb_config_binary.yaml",
         namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)

    if isinstance(param, str):
        param = JobConfig.load_from_file(param)

    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]

    backend = config.backend
    work_mode = config.work_mode

    # data sets
    guest_train_data = {
        "name": param['data_guest_train'],
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": param['data_host_train'],
        "namespace": f"experiment{namespace}"
    }
    guest_validate_data = {
        "name": param['data_guest_val'],
        "namespace": f"experiment{namespace}"
    }
    host_validate_data = {
        "name": param['data_host_val'],
        "namespace": f"experiment{namespace}"
    }

    # init pipeline
    pipeline = PipeLine().set_initiator(role="guest",
                                        party_id=guest).set_roles(
                                            guest=guest,
                                            host=host,
                                        )

    # set data reader and data-io

    reader_0, reader_1 = Reader(name="reader_0"), Reader(name="reader_1")
    reader_0.get_party_instance(
        role="guest", party_id=guest).algorithm_param(table=guest_train_data)
    reader_0.get_party_instance(
        role="host", party_id=host).algorithm_param(table=host_train_data)
    reader_1.get_party_instance(
        role="guest",
        party_id=guest).algorithm_param(table=guest_validate_data)
    reader_1.get_party_instance(
        role="host", party_id=host).algorithm_param(table=host_validate_data)

    dataio_0, dataio_1 = DataIO(name="dataio_0"), DataIO(name="dataio_1")

    dataio_0.get_party_instance(role="guest", party_id=guest).algorithm_param(
        with_label=True, output_format="dense")
    dataio_0.get_party_instance(
        role="host", party_id=host).algorithm_param(with_label=False)
    dataio_1.get_party_instance(role="guest", party_id=guest).algorithm_param(
        with_label=True, output_format="dense")
    dataio_1.get_party_instance(
        role="host", party_id=host).algorithm_param(with_label=False)

    # data intersect component
    intersect_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    # secure boost component
    hetero_secure_boost_0 = HeteroSecureBoost(
        name="hetero_secure_boost_0",
        num_trees=param['tree_num'],
        task_type=param['task_type'],
        objective_param={"objective": param['loss_func']},
        encrypt_param={"method": "iterativeAffine"},
        tree_param={"max_depth": param['tree_depth']},
        validation_freqs=1,
        learning_rate=param['learning_rate'])

    # evaluation component
    evaluation_0 = Evaluation(name="evaluation_0",
                              eval_type=param['eval_type'])

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(dataio_0.output.model))
    pipeline.add_component(intersect_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersect_1, data=Data(data=dataio_1.output.data))
    pipeline.add_component(hetero_secure_boost_0,
                           data=Data(train_data=intersect_0.output.data,
                                     validate_data=intersect_1.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_secure_boost_0.output.data))

    pipeline.compile()
    pipeline.fit(backend=backend, work_mode=work_mode)

    return {}, pipeline.get_component("evaluation_0").get_summary()