def populatemytables_core_paralel(arguments, runround): if runround == 1: ephysanal.SquarePulse().populate(**arguments) ephysanal.SweepFrameTimes().populate(**arguments) elif runround == 2: ephysanal.SquarePulseSeriesResistance().populate(**arguments) ephysanal.SweepSeriesResistance().populate(**arguments) elif runround == 3: ephysanal.SweepResponseCorrected().populate(**arguments) elif runround == 4: ephysanal.ActionPotential().populate(**arguments) ephysanal.ActionPotentialDetails().populate(**arguments)
def plot_cell_SN_ratio_APwise(roi_type = 'VolPy',v0_max = -35,holding_min = -600,frame_rate_min =300, frame_rate_max = 800 ,bin_num = 10 ): #%% Show S/N ratios for each AP cmap = cm.get_cmap('jet') # ============================================================================= # bin_num = 10 # holding_min = -600 #pA # v0_max = -35 #mV # roi_type = 'Spikepursuit'#'Spikepursuit'#'VolPy_denoised'#'SpikePursuit'#'VolPy_dexpF0'#'VolPy'#'SpikePursuit_dexpF0'#'VolPy_dexpF0'#''Spikepursuit'#'VolPy'# # ============================================================================= key = {'roi_type':roi_type} gtdata = pd.DataFrame((imaging_gt.GroundTruthROI()&key)) cells = gtdata.groupby(['session', 'subject_id','cell_number','motion_correction_method','roi_type']).size().reset_index(name='Freq') snratio = list() v0s = list() holdings = list() rss = list() threshs =list() mintreshs = list() f0s_all = list() snratios_all = list() peakamplitudes_all = list() noise_all = list() for cell in cells.iterrows(): cell = cell[1] key_cell = dict(cell) del key_cell['Freq'] snratios,f0,peakamplitudes,noises = (imaging.Movie()*imaging_gt.GroundTruthROI()*imaging_gt.ROIAPWave()*ephysanal.ActionPotentialDetails()&key_cell&'ap_real = 1'&'movie_frame_rate > {}'.format(frame_rate_min)&'movie_frame_rate < {}'.format(frame_rate_max)).fetch('apwave_snratio','apwave_f0','apwave_peak_amplitude','apwave_noise') #f0 = (imaging_gt.GroundTruthROI()*imaging.ROI()&key_cell).fetch('roi_f0') sweep = (imaging_gt.GroundTruthROI()*imaging_gt.ROIAPWave()&key_cell).fetch('sweep_number')[0] thresh = (imaging_gt.GroundTruthROI()*imaging_gt.ROIAPWave()*ephysanal.ActionPotentialDetails()&key_cell&'ap_real = 1').fetch('ap_threshold') trace = (ephys_patch.SweepResponse()*imaging_gt.GroundTruthROI()&key_cell&'sweep_number = {}'.format(sweep)).fetch('response_trace') trace =trace[0] stimulus = (ephys_patch.SweepStimulus()*imaging_gt.GroundTruthROI()&key_cell&'sweep_number = {}'.format(sweep)).fetch('stimulus_trace') stimulus =stimulus[0] RS = (ephysanal.SweepSeriesResistance()*imaging_gt.GroundTruthROI()&key_cell&'sweep_number = {}'.format(sweep)).fetch('series_resistance') RS =RS[0] medianvoltage = np.median(trace)*1000 holding = np.median(stimulus)*10**12 #print(np.mean(snratios[:100])) snratio.append(np.mean(snratios[:50])) v0s.append(medianvoltage) holdings.append(holding) rss.append(RS) threshs.append(thresh) mintreshs.append(np.min(thresh)) f0s_all.append(f0) snratios_all.append(snratios) peakamplitudes_all.append(peakamplitudes) noise_all.append(noises) #plot_AP_waveforms(key_cell,AP_tlimits) #%% for each AP fig=plt.figure() ax_sn_f0 = fig.add_axes([0,0,1,1]) ax_sn_f0_binned = fig.add_axes([0,-1.2,1,1]) ax_noise_f0 = fig.add_axes([2.6,0,1,1]) ax_noise_f0_binned = fig.add_axes([2.6,-1.2,1,1]) ax_peakampl_f0 = fig.add_axes([1.3,0,1,1]) ax_peakampl_f0_binned = fig.add_axes([1.3,-1.2,1,1]) for loopidx, (f0,snratio_now,noise_now,peakampl_now,cell_now) in enumerate(zip(f0s_all,snratios_all,noise_all,peakamplitudes_all,cells.iterrows())): if len(f0)>0: coloridx = loopidx/len(cells) cell_now = cell_now[1] label_now = 'Subject:{}'.format(cell_now['subject_id'])+' Cell:{}'.format(cell_now['cell_number']) ax_sn_f0.plot(f0,snratio_now,'o',ms=1, color = cmap(coloridx), label= label_now) ax_noise_f0.plot(f0,noise_now,'o',ms=1, color = cmap(coloridx), label= label_now) ax_peakampl_f0.plot(f0,peakampl_now,'o',ms=1, color = cmap(coloridx), label= label_now) lows = np.arange(np.min(f0),np.max(f0),(np.max(f0)-np.min(f0))/(bin_num+1)) highs = lows + (np.max(f0)-np.min(f0))/(bin_num+1) mean_f0 = list() sd_f0 = list() mean_sn = list() sd_sn =list() mean_noise = list() sd_noise =list() mean_ampl = list() sd_ampl =list() for low,high in zip(lows,highs): idx = (f0 >= low) & (f0 < high) if len(idx)>10: mean_f0.append(np.mean(f0[idx])) sd_f0.append(np.std(f0[idx])) mean_sn.append(np.mean(snratio_now[idx])) sd_sn.append(np.std(snratio_now[idx])) mean_noise.append(np.mean(noise_now[idx])) sd_noise.append(np.std(noise_now[idx])) mean_ampl.append(np.mean(peakampl_now[idx])) sd_ampl.append(np.std(peakampl_now[idx])) ax_sn_f0_binned.errorbar(mean_f0,mean_sn,sd_sn,sd_f0,'o-', color = cmap(coloridx), label= label_now) ax_noise_f0_binned.errorbar(mean_f0,mean_noise,sd_noise,sd_f0,'o-', color = cmap(coloridx), label= label_now) ax_peakampl_f0_binned.errorbar(mean_f0,mean_ampl,sd_ampl,sd_f0,'o-', color = cmap(coloridx), label= label_now) ax_sn_f0.set_xlabel('F0') ax_sn_f0.set_ylabel('S/N ratio') ax_sn_f0_binned.set_xlabel('F0') ax_sn_f0_binned.set_ylabel('S/N ratio') #ax_sn_f0_binned.legend() ax_sn_f0_binned.legend(loc='upper center', bbox_to_anchor=(-.45, 1.5), shadow=True, ncol=1) ax_noise_f0.set_xlabel('F0') ax_noise_f0.set_ylabel('Noise (std(dF/F))') ax_noise_f0_binned.set_xlabel('F0') ax_noise_f0_binned.set_ylabel('Noise (std(dF/F))') ax_peakampl_f0.set_xlabel('F0') ax_peakampl_f0.set_ylabel('Peak amplitude (dF/F)') ax_peakampl_f0_binned.set_xlabel('F0') ax_peakampl_f0_binned.set_ylabel('Peak amplitude (dF/F)') #%% cells['SN']=snratio cells['V0']=v0s cells['holding']=holdings cells['RS']=np.asarray(rss,float) print(cells) cells = cells[cells['V0']<v0_max] cells = cells[cells['holding']>holding_min] print(cells) #% S/N ratio histogram fig=plt.figure() ax_hist = fig.add_axes([0,0,1,1]) ax_hist.hist(cells['SN'].values) ax_hist.set_xlabel('S/N ratio of first 50 spikes') ax_hist.set_ylabel('# of cells') ax_hist.set_title(roi_type.replace('_',' ')) ax_hist.set_xlim([0,15])
def plot_AP_waveforms(key, AP_tlimits = [-.005,.01], bin_step = .00001, bin_size = .00025, save_image = False): #% select_high_sn_APs = False # ============================================================================= # bin_step = .00001 # bin_size = .00025 # ============================================================================= #% tau_1_on = .64/1000 tau_2_on = 4.1/1000 tau_1_ratio_on = .61 tau_1_off = .78/1000 tau_2_off = 3.9/1000 tau_1_ratio_off = 55 #% movie_numbers,sweep_numbers,apwavetimes,apwaves,famerates,snratio,apnums,ap_threshold = ((imaging_gt.GroundTruthROI()*imaging.Movie()*imaging_gt.ROIAPWave()*ephysanal.ActionPotentialDetails())&key&'ap_real = 1').fetch('movie_number','sweep_number','apwave_time','apwave_dff','movie_frame_rate','apwave_snratio','ap_num','ap_threshold') uniquemovienumbers = np.unique(movie_numbers) for movie_number in uniquemovienumbers: fig=plt.figure() ax_ephys=fig.add_axes([0,0,1,1]) ax_raw=fig.add_axes([0,1.1,1,1]) aps_now = movie_numbers == movie_number ax_bin=fig.add_axes([1.3,1.1,1,1]) ax_e_convolved = fig.add_axes([1.3,0,1,1]) ax_bin.set_title('{} ms binning'.format(bin_size*1000)) if select_high_sn_APs : medsn = np.median(snratio[aps_now]) aps_now = (movie_numbers == movie_number) & (snratio>medsn) framerate = famerates[aps_now][0] apwavetimes_conc = np.concatenate(apwavetimes[aps_now]) apwaves_conc = np.concatenate(apwaves[aps_now]) prev_sweep = None ephys_vs = list() for apwavetime,apwave,sweep_number,ap_num in zip(apwavetimes[aps_now],apwaves[aps_now],sweep_numbers[aps_now],apnums[aps_now]): wave_needed_idx = (apwavetime>=AP_tlimits[0]-1/framerate) & (apwavetime<=AP_tlimits[1]+1/framerate) ax_raw.plot(apwavetime[wave_needed_idx ]*1000,apwave[wave_needed_idx ]) if prev_sweep != sweep_number: #% trace = (ephys_patch.SweepResponse()&key&'sweep_number = {}'.format(sweep_number)).fetch1('response_trace')*1000 e_sr = (ephys_patch.SweepMetadata()&key&'sweep_number = {}'.format(sweep_number)).fetch1('sample_rate') stepback = int(np.abs(np.round(AP_tlimits[0]*e_sr))) stepforward = int(np.abs(np.round(AP_tlimits[1]*e_sr))) ephys_t = np.arange(-stepback,stepforward)/e_sr * 1000 prev_sweep = sweep_number #% apmaxindex = (ephysanal.ActionPotential()&key & 'sweep_number = {}'.format(sweep_number) & 'ap_num = {}'.format(ap_num)).fetch1('ap_max_index') ephys_v = trace[apmaxindex-stepback:apmaxindex+stepforward] ephys_vs.append(ephys_v) ax_ephys.plot(ephys_t,ephys_v) #break #% mean_ephys_v = np.mean(np.asarray(ephys_vs),0) #% t = np.arange(0,.01,1/e_sr) f_on = tau_1_ratio_on*np.exp(t/tau_1_on) + (1-tau_1_ratio_on)*np.exp(-t/tau_2_on) f_off = tau_1_ratio_off*np.exp(t[::-1]/tau_1_off) + (1-tau_1_ratio_off)*np.exp(-t[::-1]/tau_2_off) f_on = f_on/np.max(f_on) f_off = f_off/np.max(f_off) kernel = np.concatenate([f_on,np.zeros(len(f_off))])[::-1] kernel = kernel /sum(kernel ) trace_conv0 = np.convolve(np.concatenate([mean_ephys_v[::-1],mean_ephys_v,mean_ephys_v[::-1]]),kernel,mode = 'same') trace_conv0 = trace_conv0[len(mean_ephys_v):2*len(mean_ephys_v)] kernel = np.ones(int(np.round(e_sr/framerate))) kernel = kernel /sum(kernel ) trace_conv = np.convolve(np.concatenate([trace_conv0[::-1],trace_conv0,trace_conv0[::-1]]),kernel,mode = 'same') trace_conv = trace_conv[len(mean_ephys_v):2*len(mean_ephys_v)] bin_centers = np.arange(np.min(apwavetime),np.max(apwavetime),bin_step) bin_mean = list() for bin_center in bin_centers: bin_mean.append(np.mean(apwaves_conc[(apwavetimes_conc>bin_center-bin_size/2) & (apwavetimes_conc<bin_center+bin_size/2)])) ax_bin.plot(bin_centers*1000,np.asarray(bin_mean),'g-') ax_bin.invert_yaxis() ax_bin.set_xlim(np.asarray(AP_tlimits)*1000) ax_raw.invert_yaxis() ax_raw.autoscale(tight = True) ax_raw.set_xlim(np.asarray(AP_tlimits)*1000) ax_raw.set_ylabel('dF/F') ax_raw.set_title('subject: {} cell: {} movie: {} apnum: {}'.format(key['subject_id'],key['cell_number'],movie_number,sum(aps_now))) ax_ephys.set_xlim(np.asarray(AP_tlimits)*1000) ax_ephys.set_xlabel('ms') ax_ephys.set_ylabel('mV') ax_e_convolved.plot(ephys_t,mean_ephys_v,'k-',label = 'mean') ax_e_convolved.plot(ephys_t,trace_conv0,'g--',label = 'convolved mean') ax_e_convolved.plot(ephys_t,trace_conv,'g-',label = 'convolved & binned mean') ax_e_convolved.legend() ax_e_convolved.set_xlim(np.asarray(AP_tlimits)*1000) ax_e_convolved.set_xlabel('ms') plt.show() imaging_gt.ROIEphysCorrelation() if save_image: fig.savefig('./figures/APwaveforms_subject_{}_cell_{}_movie_{}.png'.format(key['subject_id'],key['cell_number'],movie_number), bbox_inches = 'tight')
step_back = int(integration_window*sr) if step_back<squarepulse['square_pulse_start_idx'] and np.abs(np.median(stim[:step_back]))<=max_baseline_current and np.median(trace[:step_back])<max_v0: RS = float((ephysanal.SweepSeriesResistance()&squarepulse).fetch1('series_resistance')) RS_residual = float((ephysanal.SweepSeriesResistance()&squarepulse).fetch1('series_resistance_residual')) baseline_v = np.median(trace[squarepulse['square_pulse_start_idx']-step_back:squarepulse['square_pulse_start_idx']]) Rin_v = np.median(trace[squarepulse['square_pulse_end_idx']-step_back:squarepulse['square_pulse_end_idx']]) dv = Rin_v-baseline_v di = squarepulse['square_pulse_amplitude'] Rin = dv/di/1000000 - RS_residual Rins.append(Rin) RSs.append(RS) v0s.append(baseline_v*1000) #break if len(Rins)>1: rs,threshold,baseline,hw,amplitude = (ephysanal.SweepSeriesResistance()*ephysanal.ActionPotential()*ephysanal.ActionPotentialDetails()&cell&'ap_real=1').fetch('series_resistance','ap_threshold','ap_baseline_value','ap_halfwidth','ap_amplitude') needed = (rs<AP_max_RS) & (baseline<AP_max_baseline) if sum(needed)>=100: ap_order = np.argsort(hw[needed])#[::-1] AP_ampl = np.median(amplitude[needed][ap_order][:APs_needed]) AP_hw = np.median(hw[needed][ap_order][:APs_needed]) AP_threshold = np.median(threshold[needed][ap_order][:APs_needed]) RS = np.median(RSs) Rin = np.median(Rins) v0 = np.median(v0s) ephys_data['cell_dict'].append(cell) ephys_data['virus'].append(virus) ephys_data['expression_time'].append(expression_time) ephys_data['RS'].append(RS) ephys_data['Rin'].append(Rin) ephys_data['AP_amplitude'].append(AP_ampl)
# data['figure_handle'].savefig('./figures/{}_cell_{}_roi_type_{}_long.png'.format(key_cell['subject_id'],key_cell['cell_number'],key_cell['roi_type']), bbox_inches = 'tight') # print(cell) # ============================================================================= #%% #%% data = plot_ephys_ophys_trace(key_cell,time_to_plot=25,trace_window = 1,show_e_ap_peaks = True,show_o_ap_peaks = True) #%% session = 1 subject_id = 456462 cell_number = 5 roi_type = 'Spikepursuit'#'Spikepursuit'#'VolPy_denoised'#'SpikePursuit'#'VolPy_dexpF0'#'VolPy'#'SpikePursuit_dexpF0'#'VolPy_dexpF0'#''Spikepursuit'#'VolPy'# key_cell = {'session':session,'subject_id':subject_id,'cell_number':cell_number,'roi_type':roi_type } session_time, cell_recording_start = (experiment.Session()*ephys_patch.Cell()&key_cell).fetch1('session_time','cell_recording_start') first_movie_start_time = np.min(np.asarray(((imaging.Movie()*imaging_gt.GroundTruthROI())&key_cell).fetch('movie_start_time'),float)) first_movie_start_time_real = first_movie_start_time + session_time.total_seconds() threshold,apmaxtime = (imaging_gt.ROIAPWave()*ephysanal.ActionPotential()*ephysanal.ActionPotentialDetails()&key_cell&'ap_real=1').fetch('ap_threshold','ap_max_time') threshold=np.asarray(threshold,float) apmaxtime=np.asarray(apmaxtime,float) # ============================================================================= # session_time_to_plot = time_to_plot+first_movie_start_time # time relative to session start # cell_time_to_plot= session_time_to_plot + session_time.total_seconds() -cell_recording_start.total_seconds() # time relative to recording start # ============================================================================= #% time_to_plot = apmaxtime[np.argmin(threshold)]+cell_recording_start.total_seconds() - first_movie_start_time_real data = plot_ephys_ophys_trace(key_cell, time_to_plot=time_to_plot, trace_window = .5, show_stimulus = False, show_e_ap_peaks = False,
fig=plt.figure() ax_ephys = fig.add_axes([0,0,2,.8]) ax_stim = fig.add_axes([0,-.3,2,.2]) ax_ap1 = fig.add_axes([0,-.8,2,.4]) ax_ap2 = ax_ap1.twinx() ax_snr = fig.add_axes([0,-1.3,2,.4]) for t,response,stimulus,metadata_now in zip(sweep_time,sweep_response,sweep_stimulus,sweep_metadata): ax_ephys.plot(t,response,'k-') ax_stim.plot(t,stimulus,'k-') #% key_cell ={'subject_id': metadata_now['subject_id'], 'session': metadata_now['session'], 'cell_number':metadata_now['cell_number'], 'sweep_number':metadata_now['sweep_number']} ap_max_time, ap_amplitude,ap_halfwidth,ap_threshold,snratio = (imaging_gt.GroundTruthROI()*imaging_gt.ROIAPWave()*ephysanal.ActionPotential()*ephysanal.ActionPotentialDetails()&key_cell&'ap_real=1'&'roi_type="VolPy"').fetch('ap_max_time','ap_amplitude','ap_halfwidth','ap_threshold','apwave_snratio') ap_max_time = np.asarray(ap_max_time,float) ax_ap2.plot(ap_max_time,ap_threshold-junction_potential,'ro') ax_ap1.plot(ap_max_time,ap_amplitude,'ko') ax_snr.plot(ap_max_time,snratio,'go') #% if dff is not None: ax_ophys = fig.add_axes([0,1,2,.8]) prevminval = 0 for dff_now,alpha_now in zip(dff_list,np.arange(1,1/(len(dff_list)+1),-1/(len(dff_list)+1))): dfftoplotnow = dff_now + prevminval ax_ophys.plot(frame_times,dfftoplotnow,'g-',alpha=alpha_now) prevminval = np.min(dfftoplotnow) -.01 #ax_ophys.plot(frame_times,dff,'g-')
def plot_cell_SN_ratio_APwise(roi_type='VolPy', v0_max=-35, holding_min=-600, frame_rate_min=300, frame_rate_max=1800, F0_min=50, bin_num=10): #%% Show S/N ratios for each AP bin_num = 10 holding_min = -600 #pA v0_max = -35 #mV roi_type = 'VolPy_raw' #'Spikepursuit'#'VolPy_denoised'#'SpikePursuit'#'VolPy_dexpF0'#'VolPy'#'SpikePursuit_dexpF0'#'VolPy_dexpF0'#''Spikepursuit'#'VolPy'# F0_min = 50 frame_rate_min = 200 frame_rate_max = 800 cmap = cm.get_cmap('jet') key = {'roi_type': roi_type} gtdata = pd.DataFrame((imaging_gt.GroundTruthROI() & key)) cells = gtdata.groupby([ 'session', 'subject_id', 'cell_number', 'motion_correction_method', 'roi_type' ]).size().reset_index(name='Freq') snratio = list() v0s = list() holdings = list() rss = list() threshs = list() mintreshs = list() f0s_all = list() snratios_all = list() peakamplitudes_all = list() noise_all = list() for cell in cells.iterrows(): cell = cell[1] key_cell = dict(cell) del key_cell['Freq'] snratios, f0, peakamplitudes, noises = ( imaging.Movie() * imaging_gt.GroundTruthROI() * imaging_gt.ROIAPWave() * ephysanal.ActionPotentialDetails() & key_cell & 'ap_real = 1' & 'movie_frame_rate > {}'.format(frame_rate_min) & 'movie_frame_rate < {}'.format(frame_rate_max) & 'apwave_f0 > {}'.format(F0_min)).fetch('apwave_snratio', 'apwave_f0', 'apwave_peak_amplitude', 'apwave_noise') #f0 = (imaging_gt.GroundTruthROI()*imaging.ROI()&key_cell).fetch('roi_f0') sweep = (imaging_gt.GroundTruthROI() * imaging_gt.ROIAPWave() & key_cell).fetch('sweep_number')[0] thresh = (imaging_gt.GroundTruthROI() * imaging_gt.ROIAPWave() * ephysanal.ActionPotentialDetails() & key_cell & 'ap_real = 1').fetch('ap_threshold') trace = (ephys_patch.SweepResponse() * imaging_gt.GroundTruthROI() & key_cell & 'sweep_number = {}'.format(sweep)).fetch('response_trace') trace = trace[0] stimulus = (ephys_patch.SweepStimulus() * imaging_gt.GroundTruthROI() & key_cell & 'sweep_number = {}'.format(sweep)).fetch('stimulus_trace') stimulus = stimulus[0] RS = (ephysanal.SweepSeriesResistance() * imaging_gt.GroundTruthROI() & key_cell & 'sweep_number = {}'.format(sweep)).fetch('series_resistance') RS = RS[0] medianvoltage = np.median(trace) * 1000 holding = np.median(stimulus) * 10**12 #print(np.mean(snratios[:100])) snratio.append(np.mean(snratios[:50])) v0s.append(medianvoltage) holdings.append(holding) rss.append(RS) threshs.append(thresh) mintreshs.append(np.min(thresh)) f0s_all.append(f0) snratios_all.append(snratios) peakamplitudes_all.append(peakamplitudes) noise_all.append(noises) #plot_AP_waveforms(key_cell,AP_tlimits) #%% # ============================================================================= # virus_list=list() # subject_ids = list() # for cell in cells.iterrows(): # cell = cell[1] # key_cell = dict(cell) # del key_cell['Freq'] # virus_id = (lab.Surgery.VirusInjection()&'subject_id = {}'.format(key_cell['subject_id'])).fetch('virus_id')[0] # if virus_id == 238: # virus = 'Voltron 1' # elif virus_id == 240: # virus = 'Voltron 2' # virus_list.append(virus) # subject_ids.append(key_cell['subject_id']) # # order = np.argsort(virus_list) # order = np.lexsort((virus_list, subject_ids)) # snratio = np.asarray(snratio)[order] # v0s = np.asarray(v0s)[order] # holdings = np.asarray(holdings)[order] # rss = np.asarray(rss)[order] # threshs =np.asarray(threshs)[order] # mintreshs = np.asarray(mintreshs)[order] # f0s_all = np.asarray(f0s_all)[order] # snratios_all = np.asarray(snratios_all)[order] # peakamplitudes_all = np.asarray(peakamplitudes_all)[order] # noise_all = np.asarray(noise_all)[order] # virus_list = np.asarray(virus_list)[order] # cells = cells.set_index(order, append=True).sort_index(level=1).reset_index(1, drop=True) # ============================================================================= #%% apnum = 50 fig = plt.figure(figsize=[10, 10]) ax_exptime_f0 = fig.add_subplot(221) ax_exptime_dff = fig.add_subplot(222) ax_exptime_noise = fig.add_subplot(223) ax_exptime_snration = fig.add_subplot(224) for loopidx, (f0, snratio_now, noise_now, peakampl_now, cell_now) in enumerate( zip(f0s_all, snratios_all, noise_all, peakamplitudes_all, cells.iterrows())): if len( f0 ) > 0: # and cell_now[1]['subject_id']==466774:# and cell_now[1]['cell_number']==1: coloridx = loopidx / len(cells) cell_now = cell_now[1] virus_id = (lab.Surgery.VirusInjection() & 'subject_id = {}'.format( cell_now['subject_id'])).fetch('virus_id')[0] if virus_id == 238: virus = 'Voltron 1' elif virus_id == 240: virus = 'Voltron 2' else: virus = '??' label_now = 'Subject:{}'.format( cell_now['subject_id']) + ' Cell:{} - {}'.format( cell_now['cell_number'], virus) expression_time = np.diff( (lab.Surgery() & 'subject_id = {}'.format( cell_now['subject_id'])).fetch('start_time'))[0].days ax_exptime_f0.plot(expression_time, np.mean(f0[:apnum]), 'o', ms=10, color=cmap(coloridx), label=label_now) ax_exptime_f0.errorbar(expression_time, np.mean(f0[:apnum]), np.std(f0[:apnum]), ecolor=cmap(coloridx)) ax_exptime_f0.set_xlabel('expression time (days)') ax_exptime_f0.set_ylabel('F0 (pixel intensity)') ax_exptime_dff.plot(expression_time, np.mean(peakampl_now[:apnum]), 'o', ms=10, color=cmap(coloridx), label=label_now) ax_exptime_dff.errorbar(expression_time, np.mean(peakampl_now[:apnum]), np.std(peakampl_now[:apnum]), ecolor=cmap(coloridx)) ax_exptime_dff.set_xlabel('expression time (days)') ax_exptime_dff.set_ylabel('AP peak amplitude (dF/F)') ax_exptime_noise.plot(expression_time, np.mean(noise_now[:apnum]), 'o', ms=10, color=cmap(coloridx), label=label_now) ax_exptime_noise.errorbar(expression_time, np.mean(noise_now[:apnum]), np.std(noise_now[:apnum]), ecolor=cmap(coloridx)) ax_exptime_noise.set_xlabel('expression time (days)') ax_exptime_noise.set_ylabel('noise (dF/F)') ax_exptime_snration.plot(expression_time, np.mean(snratio_now[:apnum]), 'o', ms=10, color=cmap(coloridx), label=label_now) ax_exptime_snration.errorbar(expression_time, np.mean(snratio_now[:apnum]), np.std(snratio_now[:apnum]), ecolor=cmap(coloridx)) ax_exptime_snration.set_xlabel('expression time (days)') ax_exptime_snration.set_ylabel('S/N ratio') #%% for each AP fig = plt.figure() ax_sn_f0 = fig.add_axes([0, 0, 1, 1]) ax_sn_f0_binned = fig.add_axes([0, -1.2, 1, 1]) ax_noise_f0 = fig.add_axes([2.6, 0, 1, 1]) ax_noise_f0_binned = fig.add_axes([2.6, -1.2, 1, 1]) ax_peakampl_f0 = fig.add_axes([1.3, 0, 1, 1]) ax_peakampl_f0_binned = fig.add_axes([1.3, -1.2, 1, 1]) for loopidx, (f0, snratio_now, noise_now, peakampl_now, cell_now) in enumerate( zip(f0s_all, snratios_all, noise_all, peakamplitudes_all, cells.iterrows())): if len( f0 ) > 0: # and cell_now[1]['subject_id']==466774:# and cell_now[1]['cell_number']==1: coloridx = loopidx / len(cells) cell_now = cell_now[1] virus_id = (lab.Surgery.VirusInjection() & 'subject_id = {}'.format( cell_now['subject_id'])).fetch('virus_id')[0] if virus_id == 238: virus = 'Voltron 1' elif virus_id == 240: virus = 'Voltron 2' else: virus = '??' label_now = 'Subject:{}'.format( cell_now['subject_id']) + ' Cell:{} - {}'.format( cell_now['cell_number'], virus) ax_sn_f0.plot(f0, snratio_now, 'o', ms=1, color=cmap(coloridx), label=label_now) ax_noise_f0.plot(f0, noise_now, 'o', ms=1, color=cmap(coloridx), label=label_now) ax_peakampl_f0.plot(f0, peakampl_now, 'o', ms=1, color=cmap(coloridx), label=label_now) lows = np.arange(np.min(f0), np.max(f0), (np.max(f0) - np.min(f0)) / (bin_num + 1)) highs = lows + (np.max(f0) - np.min(f0)) / (bin_num + 1) mean_f0 = list() sd_f0 = list() mean_sn = list() sd_sn = list() mean_noise = list() sd_noise = list() mean_ampl = list() sd_ampl = list() for low, high in zip(lows, highs): idx = (f0 >= low) & (f0 < high) if len(idx) > 10: mean_f0.append(np.mean(f0[idx])) sd_f0.append(np.std(f0[idx])) mean_sn.append(np.mean(snratio_now[idx])) sd_sn.append(np.std(snratio_now[idx])) mean_noise.append(np.mean(noise_now[idx])) sd_noise.append(np.std(noise_now[idx])) mean_ampl.append(np.mean(peakampl_now[idx])) sd_ampl.append(np.std(peakampl_now[idx])) ax_sn_f0_binned.errorbar(mean_f0, mean_sn, sd_sn, sd_f0, 'o-', color=cmap(coloridx), label=label_now) ax_noise_f0_binned.errorbar(mean_f0, mean_noise, sd_noise, sd_f0, 'o-', color=cmap(coloridx), label=label_now) ax_peakampl_f0_binned.errorbar(mean_f0, mean_ampl, sd_ampl, sd_f0, 'o-', color=cmap(coloridx), label=label_now) ax_sn_f0.set_xlabel('F0') ax_sn_f0.set_ylabel('S/N ratio') ax_sn_f0_binned.set_xlabel('F0') ax_sn_f0_binned.set_ylabel('S/N ratio') #ax_sn_f0_binned.legend() ax_sn_f0_binned.legend(loc='upper center', bbox_to_anchor=(-.45, 1.5), shadow=True, ncol=1) ax_noise_f0.set_xlabel('F0') ax_noise_f0.set_ylabel('Noise (std(dF/F))') ax_noise_f0_binned.set_xlabel('F0') ax_noise_f0_binned.set_ylabel('Noise (std(dF/F))') ax_peakampl_f0.set_xlabel('F0') ax_peakampl_f0.set_ylabel('Peak amplitude (dF/F)') ax_peakampl_f0_binned.set_xlabel('F0') ax_peakampl_f0_binned.set_ylabel('Peak amplitude (dF/F)') #%% cells['SN'] = snratio cells['V0'] = v0s cells['holding'] = holdings cells['RS'] = np.asarray(rss, float) print(cells) cells = cells[cells['V0'] < v0_max] cells = cells[cells['holding'] > holding_min] print(cells) #% S/N ratio histogram fig = plt.figure() ax_hist = fig.add_axes([0, 0, 1, 1]) ax_hist.hist(cells['SN'].values) ax_hist.set_xlabel('S/N ratio of first 50 spikes') ax_hist.set_ylabel('# of cells') ax_hist.set_title(roi_type.replace('_', ' ')) ax_hist.set_xlim([0, 15])