from pipe import Pipe from wrapper import knn from pipetools import predict, dump, load_y, copy, evaluate, echo from utils import load_x, load_y from multipipetools import average from splitter import cross file = './datasets/iris/iris.data' a = Pipe() \ .x(load_x(file)) \ .y(load_y(file))\ .split(5, cross()) \ .pipe(knn(1)) \ .pipe(copy('x_test', 'x')) \ .pipe(copy('y_test', 'y')) \ .pipe(predict()) \ .pipe(evaluate()) \ .merge('evaluation', average('evaluation'))\ .pipe(dump('evaluation'))
from pipe import Pipe from wrapper import agglomerative from pipetools import dump, evaluate from utils import load_x file = './datasets/iris/iris.data' Pipe()\ .x(load_x(file, delimiter=','))\ .pipe(agglomerative(n_clusters=3))\ .pipe(dump('prediction'))
from pipe import Pipe from wrapper import kernel_density_estimation from pipetools import dump, evaluate, start_timer, stop_timer from utils import load_x # file = './datasets/pendigits/pendigits.tra' file = './datasets/iris/iris.data' Pipe() \ .x(load_x(file, delimiter=',')) \ .connect(start_timer()) \ .pipe(kernel_density_estimation(bandwidth=0.5)) \ .connect(stop_timer())\ .pipe(dump('pdf'))