예제 #1
0
def main():
    # Read RGB image and it's noisy version
    x = torch.tensor(imread('tests/assets/i01_01_5.bmp')).permute(2, 0,
                                                                  1) / 255.
    y = torch.tensor(imread('tests/assets/I01.BMP')).permute(2, 0, 1) / 255.

    if torch.cuda.is_available():
        # Move to GPU to make computaions faster
        x = x.cuda()
        y = y.cuda()

    # To compute BRISQUE score as a measure, use lower case function from the library
    brisque_index: torch.Tensor = piq.brisque(x,
                                              data_range=1.,
                                              reduction='none')
    # In order to use BRISQUE as a loss function, use corresponding PyTorch module.
    # Note: the back propagation is not available using torch==1.5.0.
    # Update the environment with latest torch and torchvision.
    brisque_loss: torch.Tensor = piq.BRISQUELoss(data_range=1.,
                                                 reduction='none')(x)
    print(
        f"BRISQUE index: {brisque_index.item():0.4f}, loss: {brisque_loss.item():0.4f}"
    )

    # To compute Content score as a loss function, use corresponding PyTorch module
    # By default VGG16 model is used, but any feature extractor model is supported.
    # Don't forget to adjust layers names accordingly. Features from different layers can be weighted differently.
    # Use weights parameter. See other options in class docstring.
    content_loss = piq.ContentLoss(feature_extractor="vgg16",
                                   layers=("relu3_3", ),
                                   reduction='none')(x, y)
    print(f"ContentLoss: {content_loss.item():0.4f}")

    # To compute DISTS as a loss function, use corresponding PyTorch module
    # By default input images are normalized with ImageNet statistics before forwarding through VGG16 model.
    # If there is no need to normalize the data, use mean=[0.0, 0.0, 0.0] and std=[1.0, 1.0, 1.0].
    dists_loss = piq.DISTS(reduction='none')(x, y)
    print(f"DISTS: {dists_loss.item():0.4f}")

    # To compute FSIM as a measure, use lower case function from the library
    fsim_index: torch.Tensor = piq.fsim(x, y, data_range=1., reduction='none')
    # In order to use FSIM as a loss function, use corresponding PyTorch module
    fsim_loss = piq.FSIMLoss(data_range=1., reduction='none')(x, y)
    print(
        f"FSIM index: {fsim_index.item():0.4f}, loss: {fsim_loss.item():0.4f}")

    # To compute GMSD as a measure, use lower case function from the library
    # This is port of MATLAB version from the authors of original paper.
    # In any case it should me minimized. Usually values of GMSD lie in [0, 0.35] interval.
    gmsd_index: torch.Tensor = piq.gmsd(x, y, data_range=1., reduction='none')
    # In order to use GMSD as a loss function, use corresponding PyTorch module:
    gmsd_loss: torch.Tensor = piq.GMSDLoss(data_range=1., reduction='none')(x,
                                                                            y)
    print(
        f"GMSD index: {gmsd_index.item():0.4f}, loss: {gmsd_loss.item():0.4f}")

    # To compute HaarPSI as a measure, use lower case function from the library
    # This is port of MATLAB version from the authors of original paper.
    haarpsi_index: torch.Tensor = piq.haarpsi(x,
                                              y,
                                              data_range=1.,
                                              reduction='none')
    # In order to use HaarPSI as a loss function, use corresponding PyTorch module
    haarpsi_loss: torch.Tensor = piq.HaarPSILoss(data_range=1.,
                                                 reduction='none')(x, y)
    print(
        f"HaarPSI index: {haarpsi_index.item():0.4f}, loss: {haarpsi_loss.item():0.4f}"
    )

    # To compute LPIPS as a loss function, use corresponding PyTorch module
    lpips_loss: torch.Tensor = piq.LPIPS(reduction='none')(x, y)
    print(f"LPIPS: {lpips_loss.item():0.4f}")

    # To compute MDSI as a measure, use lower case function from the library
    mdsi_index: torch.Tensor = piq.mdsi(x, y, data_range=1., reduction='none')
    # In order to use MDSI as a loss function, use corresponding PyTorch module
    mdsi_loss: torch.Tensor = piq.MDSILoss(data_range=1., reduction='none')(x,
                                                                            y)
    print(
        f"MDSI index: {mdsi_index.item():0.4f}, loss: {mdsi_loss.item():0.4f}")

    # To compute MS-SSIM index as a measure, use lower case function from the library:
    ms_ssim_index: torch.Tensor = piq.multi_scale_ssim(x, y, data_range=1.)
    # In order to use MS-SSIM as a loss function, use corresponding PyTorch module:
    ms_ssim_loss = piq.MultiScaleSSIMLoss(data_range=1., reduction='none')(x,
                                                                           y)
    print(
        f"MS-SSIM index: {ms_ssim_index.item():0.4f}, loss: {ms_ssim_loss.item():0.4f}"
    )

    # To compute Multi-Scale GMSD as a measure, use lower case function from the library
    # It can be used both as a measure and as a loss function. In any case it should me minimized.
    # By defualt scale weights are initialized with values from the paper.
    # You can change them by passing a list of 4 variables to scale_weights argument during initialization
    # Note that input tensors should contain images with height and width equal 2 ** number_of_scales + 1 at least.
    ms_gmsd_index: torch.Tensor = piq.multi_scale_gmsd(x,
                                                       y,
                                                       data_range=1.,
                                                       chromatic=True,
                                                       reduction='none')
    # In order to use Multi-Scale GMSD as a loss function, use corresponding PyTorch module
    ms_gmsd_loss: torch.Tensor = piq.MultiScaleGMSDLoss(chromatic=True,
                                                        data_range=1.,
                                                        reduction='none')(x, y)
    print(
        f"MS-GMSDc index: {ms_gmsd_index.item():0.4f}, loss: {ms_gmsd_loss.item():0.4f}"
    )

    # To compute PSNR as a measure, use lower case function from the library.
    psnr_index = piq.psnr(x, y, data_range=1., reduction='none')
    print(f"PSNR index: {psnr_index.item():0.4f}")

    # To compute PieAPP as a loss function, use corresponding PyTorch module:
    pieapp_loss: torch.Tensor = piq.PieAPP(reduction='none', stride=32)(x, y)
    print(f"PieAPP loss: {pieapp_loss.item():0.4f}")

    # To compute SSIM index as a measure, use lower case function from the library:
    ssim_index = piq.ssim(x, y, data_range=1.)
    # In order to use SSIM as a loss function, use corresponding PyTorch module:
    ssim_loss: torch.Tensor = piq.SSIMLoss(data_range=1.)(x, y)
    print(
        f"SSIM index: {ssim_index.item():0.4f}, loss: {ssim_loss.item():0.4f}")

    # To compute Style score as a loss function, use corresponding PyTorch module:
    # By default VGG16 model is used, but any feature extractor model is supported.
    # Don't forget to adjust layers names accordingly. Features from different layers can be weighted differently.
    # Use weights parameter. See other options in class docstring.
    style_loss = piq.StyleLoss(feature_extractor="vgg16",
                               layers=("relu3_3", ))(x, y)
    print(f"Style: {style_loss.item():0.4f}")

    # To compute TV as a measure, use lower case function from the library:
    tv_index: torch.Tensor = piq.total_variation(x)
    # In order to use TV as a loss function, use corresponding PyTorch module:
    tv_loss: torch.Tensor = piq.TVLoss(reduction='none')(x)
    print(f"TV index: {tv_index.item():0.4f}, loss: {tv_loss.item():0.4f}")

    # To compute VIF as a measure, use lower case function from the library:
    vif_index: torch.Tensor = piq.vif_p(x, y, data_range=1.)
    # In order to use VIF as a loss function, use corresponding PyTorch class:
    vif_loss: torch.Tensor = piq.VIFLoss(sigma_n_sq=2.0, data_range=1.)(x, y)
    print(f"VIFp index: {vif_index.item():0.4f}, loss: {vif_loss.item():0.4f}")

    # To compute VSI score as a measure, use lower case function from the library:
    vsi_index: torch.Tensor = piq.vsi(x, y, data_range=1.)
    # In order to use VSI as a loss function, use corresponding PyTorch module:
    vsi_loss: torch.Tensor = piq.VSILoss(data_range=1.)(x, y)
    print(f"VSI index: {vsi_index.item():0.4f}, loss: {vsi_loss.item():0.4f}")
예제 #2
0
import kornia.losses as kornia
import piq
import IQA_pytorch as IQA
import pytorch_msssim as vainf

sys.path.append(os.path.abspath('..'))

import piqa

LENNA = 'https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'

METRICS = {
    'TV': (1, {
        'kornia.tv': kornia.total_variation,
        'piq.tv': lambda x: piq.total_variation(x, norm_type='l1'),
        'piq.TV': piq.TVLoss(norm_type='l1'),
        'piqa.TV': piqa.TV(),
    }),
    'PSNR': (2, {
        'sk.psnr-np': sk.peak_signal_noise_ratio,
        'piq.psnr': piq.psnr,
        'kornia.PSNR': kornia.PSNRLoss(max_val=1.),
        'piqa.PSNR': piqa.PSNR(),
    }),
    'SSIM': (2, {
        'sk.ssim-np':
        lambda x, y: sk.structural_similarity(
            x,
            y,
            win_size=11,
            multichannel=True,
예제 #3
0
 def __init__(self):
     self.loss = piq.TVLoss()