예제 #1
0
파일: prior.py 프로젝트: terliuk/pisa
    def __init_spline(self, knots, coeffs, deg, units=None):
        if not isinstance(knots, ureg.Quantity):
            if units is None:
                knots = knots * ureg.dimensionless
            else:
                knots = ureg.Quantity(np.asarray(knots), units)
        self._state_attrs.extend(['knots', 'coeffs', 'deg', 'units'])
        self.kind = 'spline'
        if isinstance(knots, ureg.Quantity):
            self.units = str(knots.units)
        self.knots = knots
        self.coeffs = coeffs
        self.deg = deg

        def llh(x):
            x = self.__strip(self.__convert(x))
            return splev(x, tck=(self.__strip(self.knots), coeffs, deg), ext=2)

        self.llh = llh
        self.max_at = fminbound(
            func=self.__attach_units_to_args(self.chi2),
            x1=np.min(self.__strip(self.knots)),
            x2=np.max(self.__strip(self.knots)),
        )
        if self.units is not None:
            self.max_at = self.max_at * ureg(self.units)
        self.max_at_str = self.__stringify(self.max_at)
        self.valid_range = (np.min(self.knots) * ureg(self.units),
                            np.max(self.knots) * ureg(self.units))
        self._str = lambda s: 'spline prior: deg=%d, valid in [%s, %s]%s; max at %s%s' \
                %(self.deg, self.__stringify(np.min(self.knots)),
                  self.__stringify(np.max(self.knots)), self.units_str,
                  self.max_at_str, self.units_str)
예제 #2
0
파일: prior.py 프로젝트: philippeller/pisa
    def __init_spline(self, knots, coeffs, deg, units=None):
        knots = interpret_quantity(knots, expect_sequence=True)
        self._state_attrs.extend(['knots', 'coeffs', 'deg'])
        self.kind = 'spline'
        if isunitless(knots):
            knots = ureg.Quantity(knots, units)
        elif units is not None:
            units = ureg.Unit(units)
            assert knots.dimensionality == units.dimensionality
            knots = knots.to(units)

        self.units = str(knots.units)

        self.knots = knots
        self.coeffs = coeffs
        self.deg = deg
        def llh(x):
            x = self.__strip(self.__convert(x))
            return splev(x, tck=(self.__strip(self.knots), coeffs, deg), ext=2)
        self.llh = llh
        self.max_at = fminbound(
            func=self.__attach_units_to_args(self.chi2),
            x1=np.min(self.__strip(self.knots)),
            x2=np.max(self.__strip(self.knots)),
        )
        if self.units is not None:
            self.max_at = self.max_at * ureg(self.units)
        self.max_at_str = self.__stringify(self.max_at)
        self.valid_range = (np.min(self.knots) * ureg(self.units),
                            np.max(self.knots) * ureg(self.units))
        self._str = lambda s: 'spline prior: deg=%d, valid in [%s, %s]%s; max at %s%s' \
                %(self.deg, self.__stringify(np.min(self.knots)),
                  self.__stringify(np.max(self.knots)), self.units_str,
                  self.max_at_str, self.units_str)
예제 #3
0
def parse_param(config, section, selector, fullname, pname, value):
    """Parse a param specification from a PISA config file.

    Note that if the param sepcification does not include ``fixed``,
    ``prior``, and/or ``range``, the defaults for these are:
    ``fixed = True``, ``prior = None``, and ``range = None``.

    If a prior is specified explicitly via ``.prior``, this takes precendence,
    but if no ``.prior`` is specified and the param's value is parsed to be a
    :class:`uncertainties.AffineScalarFunc` (i.e. have `std_dev` attribute), a
    Gaussian prior is constructed from that and then the AffineScalarFunc is
    stripped out of the param's value (such that it is just a
    :class:`~pint.quantity.Quantity`).

    Parameters
    ----------
    config : pisa.utils.config_parser.PISAConfigParser
    section : string
    selector : string or None
    fullname : string
    pname : string
    value : string

    Returns
    -------
    param : pisa.core.param.Param

    """
    # Note: imports placed here to avoid circular imports
    from pisa.core.param import Param
    from pisa.core.prior import Prior
    kwargs = dict(name=pname, is_fixed=True, prior=None, range=None)
    try:
        value = parse_quantity(value)
        kwargs['value'] = value.nominal_value * value.units
    except ValueError:
        value = parse_string_literal(value)
        kwargs['value'] = value

    # Search for explicit attr specifications
    if config.has_option(section, fullname + '.fixed'):
        kwargs['is_fixed'] = config.getboolean(section, fullname + '.fixed')

    if config.has_option(section, fullname + '.unique_id'):
        kwargs['unique_id'] = config.get(section, fullname + '.unique_id')

    if config.has_option(section, fullname + '.range'):
        range_ = config.get(section, fullname + '.range')
        # Note: `nominal` and `sigma` are called out in the `range_` string
        if 'nominal' in range_:
            nominal = value.n * value.units  # pylint: disable=unused-variable
        if 'sigma' in range_:
            sigma = value.s * value.units  # pylint: disable=unused-variable
        range_ = range_.replace('[', 'np.array([')
        range_ = range_.replace(']', '])')
        # Strip out uncertainties from value itself (as we will rely on the
        # prior from here on out)
        kwargs['range'] = eval(range_).to(value.units)  # pylint: disable=eval-used

    if config.has_option(section, fullname + '.prior'):
        prior = str(config.get(section, fullname + '.prior')).strip().lower()
        if prior == 'uniform':
            kwargs['prior'] = Prior(kind='uniform')
        elif prior == 'jeffreys':
            kwargs['prior'] = Prior(kind='jeffreys',
                                    A=kwargs['range'][0],
                                    B=kwargs['range'][1])
        elif prior == 'spline':
            priorname = pname
            if selector is not None:
                priorname += '_' + selector
            data = config.get(section, fullname + '.prior.data')
            data = from_file(data)
            data = data[priorname]
            knots = ureg.Quantity(np.asarray(data['knots']), data['units'])
            knots = knots.to(value.units)
            coeffs = np.asarray(data['coeffs'])
            deg = data['deg']
            kwargs['prior'] = Prior(kind='spline',
                                    knots=knots,
                                    coeffs=coeffs,
                                    deg=deg)
        elif prior == 'none':
            kwargs['prior'] = None
        elif 'gauss' in prior:
            raise Exception('Please use new style +/- notation for gaussian'
                            ' priors in config')
        else:
            raise Exception('Prior type unknown')

    elif hasattr(value, 'std_dev') and value.std_dev != 0:
        kwargs['prior'] = Prior(kind='gaussian',
                                mean=value.nominal_value * value.units,
                                stddev=value.std_dev * value.units)

    # Strip out any uncertainties from value itself (an explicit ``.prior``
    # specification takes precedence over this)
    if hasattr(value, 'std_dev'):
        value = value.nominal_value * value.units
    try:
        param = Param(**kwargs)
    except:
        logging.error('Failed to instantiate new Param object with kwargs %s',
                      kwargs)
        raise

    return param
예제 #4
0
파일: prior.py 프로젝트: terliuk/pisa
def get_prior_bounds(obj, param=None, stddev=1.0):
    """Obtain confidence regions for CL corresponding to given number of
    stddevs from parameter prior.

    Parameters
    ----------
    obj : string or Mapping
        if str, interpret as path from which to load a dict
        if dict, can be:
            template settings dict; must supply `param` to choose which to plot
            params dict; must supply `param` to choose which to plot
            prior dict

    param : Param
        Name of param for which to get bounds;
        necessary if obj is either template settings or params

    stddev : float or Iterable of floats
        number of stddevs


    Returns
    -------
    bounds : OrderedDict
        A dictionary mapping the passed `stddev` values to the corresponding
        bounds

    """
    if isbarenumeric(stddev):
        stddev = [stddev]
    elif isinstance(stddev, Iterable):
        stddev = list(stddev)

    bounds = OrderedDict()
    for s in stddev:
        bounds[s] = []

    if isinstance(obj, basestring):
        obj = from_file(obj)

    if 'params' in obj:
        obj = obj['params']
    if param is not None and param in obj:
        obj = obj[param]
    if 'prior' in obj:
        obj = obj['prior']

    prior = Prior(**obj)

    logging.debug('Getting confidence region from prior: %s', prior)
    x0 = prior.valid_range[0]
    x1 = prior.valid_range[1]
    x = ureg.Quantity(np.linspace(x0, x1, 10000), prior.units)
    chi2 = prior.chi2(x)
    for (i, xval) in enumerate(x[:-1]):
        for s in stddev:
            chi2_level = s**2
            if chi2[i] > chi2_level and chi2[i + 1] < chi2_level:
                bounds[s].append(xval)
            elif chi2[i] < chi2_level and chi2[i + 1] > chi2_level:
                bounds[s].append(x[i + 1])
    return bounds
예제 #5
0
파일: prior.py 프로젝트: terliuk/pisa
def plot_prior(obj,
               param=None,
               x_xform=None,
               ax1=None,
               ax2=None,
               **plt_kwargs):
    """Plot prior for param from template settings, params, or prior filename
    or dict.

    Arguments
    ---------
    obj : str or dict
        if str, interpret as path from which to load a dict
        if (nested) dict, (innermost) must be dict of prior properties :
            either supply `param` to choose which parameter's prior in `obj`
            to plot, or prior dict, in which case `param` need not be specified
    param
        Param name to plot; necessary if obj is either pipeline settings or
        params dict
    x_xform
        Transform to apply to x-values. E.g., to plot against sin^2 theta, use
        x_xform = lambda x: np.sin(x)**2
    ax1, ax2
        Axes onto which to plot LLH and chi-squared, respectively. If none are
        provided, new figures & axes will be created.
    plt_kwargs
        Keyword arguments to pass on to the plot function

    Returns
    -------
    ax1, ax2
        The axes onto which plots were drawn (ax1 = LLH, ax2 = chi^2)
    """
    import matplotlib as mpl
    mpl.use('pdf')
    import matplotlib.pyplot as plt
    if isinstance(obj, basestring):
        obj = from_file(obj)
    if param is not None and param in obj:
        obj = obj[param]
    if 'prior' in obj:
        obj = obj['prior']

    prior = Prior(**obj)
    logging.info('Plotting Prior: %s', prior)
    x0 = prior.valid_range[0]
    x1 = prior.valid_range[1]
    if prior.kind == 'gaussian':
        x0 = max(x0, prior.max_at - 5 * prior.stddev)
        x1 = min(x1, prior.max_at + 5 * prior.stddev)
    if np.isinf(x0):
        x0 = -1
    if np.isinf(x1):
        x1 = +1
    # if prior.units is None, will result in dimensionless quantity
    x = ureg.Quantity(np.linspace(x0, x1, 5000), prior.units)

    llh = prior.llh(x)
    chi2 = prior.chi2(x)

    if x_xform is not None:
        x = x_xform(x)

    if ax1 is None:
        f = plt.figure()
        ax1 = f.add_subplot(111)
    if ax2 is None:
        f = plt.figure()
        ax2 = f.add_subplot(111)

    ax1.plot(x, llh, **plt_kwargs)
    ax2.plot(x, chi2, **plt_kwargs)

    ax1.set_title(str(prior), fontsize=8, y=1.02)
    ax2.set_title(str(prior), fontsize=8, y=1.02)
    ax1.set_xlabel(param)
    ax2.set_xlabel(param)
    ax1.set_ylabel('LLH')
    ax2.set_ylabel(r'$\Delta\chi^2$')

    return ax1, ax2