예제 #1
0
파일: LLHAnalysis.py 프로젝트: mamday/pisa
def llh_bfgs(opt_vals,*args):
    """
    Function that the bfgs algorithm tries to minimize. Essentially,
    it is a wrapper function around get_template() and
    get_binwise_llh().

    This fuction is set up this way, because the fmin_l_bfgs_b
    algorithm must take a function with two inputs: params & *args,
    where 'params' are the actual VALUES to be varied, and must
    correspond to the limits in 'bounds', and 'args' are arguments
    which are not varied and optimized, but needed by the
    get_template() function here. Thus, we pass the arguments to this
    function as follows:

    --opt_vals: [param1,param2,...,paramN] - systematics varied in the optimization.
    --args: [names,scales,fmap,fixed_params,template_maker,opt_steps_dict,priors]
      where
        names: are the dict keys corresponding to param1, param2,...
        scales: the scales to be applied before passing to get_template
          [IMPORTANT! In the optimizer, all parameters must be ~ the same order.
          Here, we keep them between 0.1,1 so the "epsilon" step size will vary
          the parameters in roughly the same precision.]
        fmap: pseudo data flattened map
        fixed_params: dictionary of other paramters needed by the get_template()
          function
        template_maker: template maker object
        opt_steps_dict: dictionary recording information regarding the steps taken
          for each trial of the optimization process.
        priors: gaussian priors corresponding to opt_vals list.
          Format: [(prior1,best1),(prior2,best2),...,(priorN,bestN)]
    """


    names,scales,fmap,fixed_params,template_maker,opt_steps_dict,priors = args

    # free parameters being "optimized" by minimizer re-scaled to their true values.
    unscaled_opt_vals = [opt_vals[i]/scales[i] for i in xrange(len(opt_vals))]

    unscaled_free_params = { names[i]: val for i,val in enumerate(unscaled_opt_vals) }
    template_params = dict(unscaled_free_params.items() + get_values(fixed_params).items())

    # Now get true template, and compute LLH
    with Timer() as t:
        if template_params['theta23'] == 0.0:
            logging.info("Zero theta23, so generating no oscillations template...")
            true_template = template_maker.get_template_no_osc(template_params)
        else:
            true_template = template_maker.get_template(template_params)
    profile.info("==> elapsed time for template maker: %s sec"%t.secs)
    true_fmap = flatten_map(true_template,chan=template_params['channel'])

    # NOTE: The minus sign is present on both of these next two lines
    # to reflect the fact that the optimizer finds a minimum rather
    # than maximum.
    llh = -get_binwise_llh(fmap,true_fmap)
    llh -= sum([ get_prior_llh(opt_val,sigma,value)
                 for (opt_val,(sigma,value)) in zip(unscaled_opt_vals,priors)])

    # Save all optimizer-tested values to opt_steps_dict, to see
    # optimizer history later
    for key in names:
        opt_steps_dict[key].append(template_params[key])
    opt_steps_dict['llh'].append(llh)

    physics.debug("LLH is %.2f at: "%llh)
    for name, val in zip(names, opt_vals):
        physics.debug(" %20s = %6.4f" %(name,val))

    return llh
예제 #2
0
파일: Scan.py 프로젝트: mamday/pisa
def find_max_grid(fmap,template_maker,params,grid_settings,save_steps=True,
                                                     normal_hierarchy=True):
    '''
    Finds the template (and free systematic params) that maximize
    likelihood that the data came from the chosen template of true
    params, using a brute force grid scan over the whole parameter space.

    returns a dictionary of llh data and best fit params, in the format:
      {'llh': [...],
       'param1': [...],
       'param2': [...],
       ...}
    where 'param1', 'param2', ... are the free params that are varied in the
    scan. If save_steps is False, all lists only contain the best-fit parameters
    and llh values.
    '''

    #print "NOW INSIDE find_max_grid:"
    #print "After fixing to their true values, params dict is now: "
    #for key in params.keys():
    #    try: print "  >>param: %s value: %s"%(key,str(params[key]['best']))
    #    except: continue


    # Get params dict which will be optimized (free_params) and which
    # won't be (fixed_params) but are still needed for get_template()
    fixed_params = get_fixed_params(select_hierarchy(params,normal_hierarchy))
    free_params = get_free_params(select_hierarchy(params,normal_hierarchy))

    #Obtain just the priors
    priors = get_param_priors(free_params)

    #Calculate steps for all free parameters
    calc_steps(free_params, grid_settings['steps'])

    #Build a list from all parameters that holds a list of (name, step) tuples
    steplist = [ [(name,step) for step in param['steps']] for name, param in sorted(free_params.items())]

    #Prepare to store all the steps
    steps = {key:[] for key in free_params.keys()}
    steps['llh'] = []

    #Iterate over the cartesian product
    for pos in product(*steplist):

        #Get a dict with all parameter values at this position
        #including the fixed parameters
        template_params = dict(list(pos) + get_values(fixed_params).items())

        #print "   >> NOW IN LOOP: "
        #for key in template_params.keys():
        #    try: print "  >>param: %s value: %s"%(key,str(template_params[key]['value']))
        #    except: continue

        # Now get true template
        profile.info('start template calculation')
        true_template = template_maker.get_template(template_params)
        profile.info('stop template calculation')
        true_fmap = flatten_map(true_template)

        #and calculate the likelihood
        llh = -get_binwise_llh(fmap,true_fmap)

        #get sorted vals to match with priors
        vals = [ v for k,v in sorted(pos) ]
        llh -= sum([ get_prior_llh(vals,sigma,value) for (vals,(sigma,value)) in zip(vals,priors)])

        # Save all values to steps and report
        steps['llh'].append(llh)
        physics.debug("LLH is %.2f at: "%llh)
        for key, val in pos:
            steps[key].append(val)
            physics.debug(" %20s = %6.4f" %(key, val))

    #Find best fit value
    maxllh = min(steps['llh'])
    maxpos = steps['llh'].index(maxllh)

    #Report best fit
    physics.info('Found best LLH = %.2f in %d calls at:'
                 %(maxllh,len(steps['llh'])))
    for name, vals in steps.items():
        physics.info('  %20s = %6.4f'%(name,vals[maxpos]))

        #only save this maximum if asked for
        if not save_steps:
            steps[name]=vals[maxpos]

    return steps
예제 #3
0
def llh_bfgs(opt_vals, *args):
    """
    Function that the bfgs algorithm tries to minimize. Essentially,
    it is a wrapper function around get_template() and
    get_binwise_llh().

    This fuction is set up this way, because the fmin_l_bfgs_b
    algorithm must take a function with two inputs: params & *args,
    where 'params' are the actual VALUES to be varied, and must
    correspond to the limits in 'bounds', and 'args' are arguments
    which are not varied and optimized, but needed by the
    get_template() function here. Thus, we pass the arguments to this
    function as follows:

    --opt_vals: [param1,param2,...,paramN] - systematics varied in the optimization.
    --args: [names,scales,fmap,fixed_params,template_maker,opt_steps_dict,priors]
      where
        names: are the dict keys corresponding to param1, param2,...
        scales: the scales to be applied before passing to get_template
          [IMPORTANT! In the optimizer, all parameters must be ~ the same order.
          Here, we keep them between 0.1,1 so the "epsilon" step size will vary
          the parameters in roughly the same precision.]
        fmap: pseudo data flattened map
        fixed_params: dictionary of other paramters needed by the get_template()
          function
        template_maker: template maker object
        opt_steps_dict: dictionary recording information regarding the steps taken
          for each trial of the optimization process.
        priors: gaussian priors corresponding to opt_vals list.
          Format: [(prior1,best1),(prior2,best2),...,(priorN,bestN)]
    """

    names, scales, fmap, fixed_params, template_maker, opt_steps_dict, priors = args

    # free parameters being "optimized" by minimizer re-scaled to their true values.
    unscaled_opt_vals = [
        opt_vals[i] / scales[i] for i in xrange(len(opt_vals))
    ]

    unscaled_free_params = {
        names[i]: val
        for i, val in enumerate(unscaled_opt_vals)
    }
    template_params = dict(unscaled_free_params.items() +
                           get_values(fixed_params).items())

    # Now get true template, and compute LLH
    with Timer() as t:
        if template_params['theta23'] == 0.0:
            logging.info(
                "Zero theta23, so generating no oscillations template...")
            true_template = template_maker.get_template_no_osc(template_params)
        else:
            true_template = template_maker.get_template(template_params)
    profile.info("==> elapsed time for template maker: %s sec" % t.secs)
    true_fmap = flatten_map(true_template, chan=template_params['channel'])

    # NOTE: The minus sign is present on both of these next two lines
    # to reflect the fact that the optimizer finds a minimum rather
    # than maximum.
    llh = -get_binwise_llh(fmap, true_fmap)
    llh -= sum([
        get_prior_llh(opt_val, sigma, value)
        for (opt_val, (sigma, value)) in zip(unscaled_opt_vals, priors)
    ])

    # Save all optimizer-tested values to opt_steps_dict, to see
    # optimizer history later
    for key in names:
        opt_steps_dict[key].append(template_params[key])
    opt_steps_dict['llh'].append(llh)

    physics.debug("LLH is %.2f at: " % llh)
    for name, val in zip(names, opt_vals):
        physics.debug(" %20s = %6.4f" % (name, val))

    return llh
예제 #4
0
def find_max_grid(fmap,
                  template_maker,
                  params,
                  grid_settings,
                  save_steps=True,
                  normal_hierarchy=True):
    '''
    Finds the template (and free systematic params) that maximize
    likelihood that the data came from the chosen template of true
    params, using a brute force grid scan over the whole parameter space.

    returns a dictionary of llh data and best fit params, in the format:
      {'llh': [...],
       'param1': [...],
       'param2': [...],
       ...}
    where 'param1', 'param2', ... are the free params that are varied in the
    scan. If save_steps is False, all lists only contain the best-fit parameters
    and llh values.
    '''

    #print "NOW INSIDE find_max_grid:"
    #print "After fixing to their true values, params dict is now: "
    #for key in params.keys():
    #    try: print "  >>param: %s value: %s"%(key,str(params[key]['best']))
    #    except: continue

    # Get params dict which will be optimized (free_params) and which
    # won't be (fixed_params) but are still needed for get_template()
    fixed_params = get_fixed_params(select_hierarchy(params, normal_hierarchy))
    free_params = get_free_params(select_hierarchy(params, normal_hierarchy))

    #Obtain just the priors
    priors = get_param_priors(free_params)

    #Calculate steps for all free parameters
    calc_steps(free_params, grid_settings['steps'])

    #Build a list from all parameters that holds a list of (name, step) tuples
    steplist = [[(name, step) for step in param['steps']]
                for name, param in sorted(free_params.items())]

    #Prepare to store all the steps
    steps = {key: [] for key in free_params.keys()}
    steps['llh'] = []

    #Iterate over the cartesian product
    for pos in product(*steplist):

        #Get a dict with all parameter values at this position
        #including the fixed parameters
        template_params = dict(list(pos) + get_values(fixed_params).items())

        #print "   >> NOW IN LOOP: "
        #for key in template_params.keys():
        #    try: print "  >>param: %s value: %s"%(key,str(template_params[key]['value']))
        #    except: continue

        # Now get true template
        profile.info('start template calculation')
        true_template = template_maker.get_template(template_params)
        profile.info('stop template calculation')
        true_fmap = flatten_map(true_template)

        #and calculate the likelihood
        llh = -get_binwise_llh(fmap, true_fmap)

        #get sorted vals to match with priors
        vals = [v for k, v in sorted(pos)]
        llh -= sum([
            get_prior_llh(vals, sigma, value)
            for (vals, (sigma, value)) in zip(vals, priors)
        ])

        # Save all values to steps and report
        steps['llh'].append(llh)
        physics.debug("LLH is %.2f at: " % llh)
        for key, val in pos:
            steps[key].append(val)
            physics.debug(" %20s = %6.4f" % (key, val))

    #Find best fit value
    maxllh = min(steps['llh'])
    maxpos = steps['llh'].index(maxllh)

    #Report best fit
    physics.info('Found best LLH = %.2f in %d calls at:' %
                 (maxllh, len(steps['llh'])))
    for name, vals in steps.items():
        physics.info('  %20s = %6.4f' % (name, vals[maxpos]))

        #only save this maximum if asked for
        if not save_steps:
            steps[name] = vals[maxpos]

    return steps