def __transform(self, section): clazzes = adapter.classes(section) if clazzes: ret_val = [] for clazz in clazzes: ret_val.append(len(clazz['fields'])) return ret_val else: return [0]
def __transform(self, section): clazzes = adapter.classes(section) if clazzes: ret_val = [] for clazz in clazzes: if ((len(clazz['methods']) == 0) and (len(clazz['fields']) == 0)): ret_val.append(1) else: ret_val.append(0) return ret_val else: return [0]
def __transform(self, section): stat = get_stat_function(self.stat) clazzes = adapter.classes(section) if clazzes: ret_val = [] for clazz in clazzes: clazz_values = [] for field in clazz['fields']: clazz_values.append(len(field['name'])) if not clazz_values: clazz_values = [0] # if a class does not contain any field ret_val.append(stat(clazz_values)) return ret_val else: return [0]
if score == "RMSE": return make_scorer(mse, greater_is_better=False) elif score == 'PC': return make_scorer(pearson, greater_is_better=True) else: raise ValueError('Scoring {} is not supported!'.format(score)) # FEATURES = powerset(FEATURES) FEATURES = [FEATURES] X, Y = load(corpus_path=os.path.join(BASEPATH, 'data/training'), labels=DIMENSIONS) for x in X: sections = extract_sections(x) for section in sections: classes(section) recognizer = RECOGNIZER[0] result = {'recognizer_name': recognizer[0]} number_features = args.nfeatures output_filename = os.path.join( BASEPATH, 'result_{}_{}_{}_{}.json'.format(DIMENSIONS[0], SCORE, recognizer[0], number_features)) # print(output_filename) with open(output_filename, 'w') as outfile: outfile.write('Job started') print '***Number of features: {}'.format(number_features)
def __transform(self, section): clazzes = adapter.classes(section) if clazzes: return len(clazzes) else: return 0