예제 #1
0
    cuda = not opt.nocuda
    if cuda and not torch.cuda.is_available():
        raise Exception("No GPU found, please run with --nocuda")

    device = torch.device("cuda" if cuda else "cpu")

    random.seed(opt.seed)
    np.random.seed(opt.seed)
    torch.manual_seed(opt.seed)
    if cuda:
        torch.cuda.manual_seed(opt.seed)

    print('===> Loading dataset(s)')
    if opt.mode.lower() == 'train':
        whole_train_set = dataset.get_whole_training_set()
        whole_training_data_loader = DataLoader(dataset=whole_train_set,
                                                num_workers=opt.threads,
                                                batch_size=opt.cacheBatchSize,
                                                shuffle=False,
                                                pin_memory=cuda)

        train_set = dataset.get_training_query_set(opt.margin)

        print('====> Training query set:', len(train_set))
        whole_test_set = dataset.get_whole_val_set()
        print('===> Evaluating on val set, query count:',
              whole_test_set.dbStruct.numQ)
    elif opt.mode.lower() == 'test':
        if opt.split.lower() == 'test':
            whole_test_set = dataset.get_whole_test_set()
예제 #2
0
    cuda = not opt.nocuda
    if cuda and not torch.cuda.is_available():
        raise Exception("No GPU found, please run with --nocuda")

    device = torch.device("cuda" if cuda else "cpu")

    random.seed(opt.seed)
    np.random.seed(opt.seed)
    torch.manual_seed(opt.seed)
    if cuda:
        torch.cuda.manual_seed(opt.seed)

    print('===> Loading dataset(s)')
    if opt.mode.lower() == 'train':
        # a list of train sets
        whole_train_set = dataset.get_whole_training_set(opt.arch.lower())
        whole_training_data_loader = [
            DataLoader(dataset=set,
                       num_workers=opt.threads,
                       batch_size=opt.cacheBatchSize,
                       shuffle=False,
                       pin_memory=cuda) for set in whole_train_set
        ]

        # a list of train sets
        train_set_list = dataset.get_training_query_set(
            opt.arch.lower(), opt.margin)

        print('====> Training query set:', len(train_set_list[0]))
        whole_test_set = dataset.get_whole_val_set(opt.arch.lower())
        print('===> Evaluating on val set, query count:',