def helper(image_path): image = imread(image_path) result, crop = p2v.reconstruct(image) cropped_path = 'temp/cropped.jpg' imwrite(cropped_path, crop) landmarks = recognize_image(cropped_path, show_image=False) return result['Z_surface'], landmarks, crop
def test_reconstruct(self): image = imread('examples/sample.jpg') results = p2v.reconstruct(image) self.assertEqual(len(results), 2)
import pix2vertex as p2v from imageio import imread image_path = 'tommy-images/middle.jpg' image = imread(image_path) result, crop = p2v.reconstruct(image) # Interactive visualization in a notebook p2v.vis_depth_interactive(result['Z_surface']) # Static visualization using matplotlib p2v.vis_depth_matplotlib(crop, result['Z_surface']) # Export to STL p2v.save2stl(result['Z_surface'], 'res.stl')
'coords': np.vstack([ grid.records().coords[:, 0], grid.records().coords[:, 1], nd_arr.ravel() ]).T }) rec = GeoRecords(grid.proj, rec) return rec front = imread("front.jpeg") left = imread("left.jpeg") right = imread("right.jpeg") result_front, crop_front = p2v.reconstruct(front) result_left, crop_left = p2v.reconstruct(left) result_right, crop_right = p2v.reconstruct(right) front = result_front['Z_surface'] left = result_left['Z_surface'] right = result_right['Z_surface'] # Put NAN as 0 # front = front.copy() # front[np.isnan(front)] = front[~np.isnan(front)].min() # left = left.copy() # left[np.isnan(left)] = left[~np.isnan(left)].min() # right = right.copy() # right[np.isnan(right)] = right[~np.isnan(right)].min()