예제 #1
0
    def gather_patches_plain(self):
        """Assemble patch statistics relevant to lensing at small scales.

        Compute the small scale (ell > lmin) temperature power at different 
        patches across the sky as well as the average amplitude of the 
        background temperature gradient (ell < ldT).

        """
        self._edge = 0  # Not throwing away edge pixels
        m_fft = enmap.fft(self.map_in)
        hp = np.zeros(self.map_in.shape)
        hp[np.where((self._lmod > self.lmin) & (self._lmod < self.lmax))] = 1.
        self._Tss = enmap.ifft(m_fft * hp)
        self._dTy, self._dTx = gradient_flat(self.map_in, self.ldT)

        # Scale geometry for lower res map of patches
        pshp, pwcs = enmap.scale_geometry(self.map_in.shape, self.map_in.wcs,
                                          1. / self._p)
        if not self.savesteps:
            del self.map_in, m_fft
        self._T2patch = enmap.zeros(pshp, pwcs)
        self._dTxpatch = enmap.zeros(pshp, pwcs)
        self._dTypatch = enmap.zeros(pshp, pwcs)
        Trs = self._Tss[:pshp[-2] * self._p, :pshp[-1] * self._p].reshape(
            [pshp[-2], self._p, pshp[-1], self._p])
        dTxrs = self._dTx[:pshp[-2] * self._p, :pshp[-1] * self._p].reshape(
            [pshp[-2], self._p, pshp[-1], self._p])
        dTyrs = self._dTy[:pshp[-2] * self._p, :pshp[-1] * self._p].reshape(
            [pshp[-2], self._p, pshp[-1], self._p])
        self._T2patch[:, :] = np.var(Trs, axis=(1, 3))
        self._dTypatch[:, :] = np.mean(dTyrs, axis=(1, 3))
        self._dTxpatch[:, :] = np.mean(dTxrs, axis=(1, 3))
        self._dT2patch = self._dTxpatch**2 + self._dTypatch**2
        if not self.savesteps:
            del self._dTypatch, self._dTxpatch, self._dTy, self._dTx, self._Tss
예제 #2
0
파일: utils.py 프로젝트: victorcchan/cmbpix
def numgradient_flat(map_in):
    """Return the gradient maps of map_in.
    
    Perform the central difference derivative on map_in. The values at 
    boundaries contain left/right derivatives.
    
    Parameters
    ----------
    map_in: ndmap, ndarray
        The input map.
    
    Returns
    -------
    dy: ndmap, ndarray
        The gradient in the y-direction
    dx: ndmap, ndarray
        The gradient in the x-direction
    """
    yy, xx = map_in.posmap()
    dy = enmap.zeros(map_in.shape, map_in.wcs)
    dx = enmap.zeros(map_in.shape, map_in.wcs)
    dy[1:-1,:] = (map_in[:-2,:] - map_in[2:,:]) / (yy[:-2,:] - yy[2:,:])
    dx[:,1:-1] = (map_in[:,:-2] - map_in[:,2:]) / (xx[:,:-2] - xx[:,2:])
    dy[0,:] = (map_in[1,:] - map_in[0,:]) / (yy[1,:] - yy[0,:])
    dy[-1,:] = (map_in[-1,:] - map_in[-2,:]) / (yy[-1,:] - yy[-2,:])
    dx[:,0] = (map_in[:,1] - map_in[:,0]) / (xx[:,1] - xx[:,0])
    dx[:,-1] = (map_in[:,-1] - map_in[:,-2]) / (xx[:,-1] - xx[:,-2])
    return dy, dx
예제 #3
0
    def gather_patches_cos(self):
        """Assemble patch statistics for small scale lensing with cos filter.
        
        Compute the small scale (ell > 3000) temperature power at different 
        patches across the sky as well as the average amplitude of the 
        background temperature gradient (ell < 2000). For the small scale 
        statistics, also apply a filter in Fourier space such that:

        .. math::
            f_\\ell = \\cos(\\hat{\\ell}\\cdot\\hat{\\nabla T})

        """
        self._edge = 5  # Edge pixels to throw away
        p = self._p
        m_fft = enmap.fft(self.map_in)
        hp = np.zeros(self.map_in.shape)
        hp[np.where((self._lmod > self.lmin) & (self._lmod < self.lmax))] = 1.
        # Apply pre-whitening or Wiener/inverse variance filters, then top hat
        if self._aW and self.fid is not None:
            cs = CubicSpline(self.fid[0], self.fid[1])  # (ell, Cl)
            m_fft = m_fft / cs(self._lmod)
        self._Tss = enmap.ifft(m_fft * hp)
        self._dTy, self._dTx = gradient_flat(self.map_in, self.ldT)
        # Scale geometry for lower res map of patches
        pshp, pwcs = enmap.scale_geometry(self.map_in.shape, self.map_in.wcs,
                                          1. / self._p)
        if not self.savesteps:
            del self.map_in, m_fft
        self._T2patch = enmap.zeros(pshp, pwcs)
        self._dTxpatch = enmap.zeros(pshp, pwcs)
        self._dTypatch = enmap.zeros(pshp, pwcs)
        self._T_sub = np.zeros((pshp[-2], pshp[-1], p, p))
        for i in range(self._T2patch.shape[-2]):
            for j in range(self._T2patch.shape[-1]):
                self._dTypatch[i, j] = np.mean(self._dTy[i * p:(i + 1) * p,
                                                         j * p:(j + 1) * p])
                self._dTxpatch[i, j] = np.mean(self._dTx[i * p:(i + 1) * p,
                                                         j * p:(j + 1) * p])
                Tp = self._Tss[i * p:(i + 1) * p, j * p:(j + 1) * p]
                lsuby, lsubx = Tp.lmap()
                lsubmod = Tp.modlmap()
                lsubmod[0, 0] = 1.
                fl = 1.j*(lsubx*self._dTxpatch[i,j] + \
                            lsuby*self._dTypatch[i,j]) / \
                        (lsubmod * np.sqrt(self._dTxpatch[i,j]**2 + \
                                            self._dTypatch[i,j]**2))
                fl[0, 0] = 0.
                self._T_sub[i, j, :, :] = enmap.ifft(enmap.fft(Tp) * fl).real
                # Throw away pixels with edge effects
                self._T2patch[i, j] = np.var(self._T_sub[i, j, 5:-5, 5:-5])
        self._dT2patch = self._dTxpatch**2 + self._dTypatch**2
        if not self.savesteps:
            del self._dTypatch, self._dTxpatch, self._dTy, self._dTx, self._Tss
            del self._T_sub
예제 #4
0
    def test_30_supergeom_translate(self):
        """Check that coords.get_supergeom does sensible thing for maps in
        cylindrical projections with compatible but not identical
        crval.

        """
        proj = 'CAR'
        ra0, dec0 = CRVAL
        res = 0.01 * DEG
        wcs = coords.get_wcs_kernel(proj, ra0, dec0, res)

        wcs.wcs.crpix = (60, 70)
        map0 = enmap.zeros((100, 200), wcs=wcs)
        map0[2, 3] = 10.
        map0[90, 192] = 11.

        # Extracts.
        m1 = map0[:10, :10]
        m2 = map0[-10:, -10:]

        # In simple cylindrical projections, there's a degeneracy
        # between crval and crpix in the longitude component -- crval
        # can be anywhere on the equator.  It is useful to be able to
        # join maps even if they have different crval[0], provided the
        # pixel centers line up.  (The same is not true of crval[1],
        # which tips the native equator relative to the celestial
        # equator.)

        for axis, should_work in [(0, True), (1, False)]:
            dpix = 10.5
            m2 = map0[-10:, -10:]
            m2.wcs.wcs.crpix[axis] += dpix
            m2.wcs.wcs.crval[axis] += dpix * m2.wcs.wcs.cdelt[axis]

            if should_work:
                sg = coords.get_supergeom((m1.shape, m1.wcs),
                                          (m2.shape, m2.wcs))
                mapx = enmap.zeros(*sg)
                mapx.insert(m1)
                mapx.insert(m2)
                self.assertTupleEqual(map0.shape,
                                      mapx.shape,
                                      msg="Reconstructed map shape.")
                self.assertTrue(np.all(mapx == map0),
                                msg="Reconstructed map data.")

            else:
                msg = "Translating crval in dec should cause "\
                    "coord consistency check failure."
                with self.assertRaises(ValueError, msg=msg):
                    sg = coords.get_supergeom((m1.shape, m1.wcs),
                                              (m2.shape, m2.wcs))
예제 #5
0
    def gather_patches_cos2(self):
        """Assemble patch statistics for small scale lensing with cos^2 filter.
        
        Compute the small scale (ell > 3000) temperature power at different 
        patches across the sky as well as the average amplitude of the 
        background temperature gradient (ell < 2000). For the small scale 
        statistics, also apply a filter in Fourier space such that:

        .. math::
            f_\\ell = \\cos^2(\\hat{\\ell}\\cdot\\hat{\\nabla T})

        """
        self._edge = 3  # Edge pixels to throw away
        p = self._p
        m_fft = enmap.fft(self.map_in)
        hp = np.zeros(self.map_in.shape)
        hp[np.where((self._lmod > self.lmin) & (self._lmod < self.lmax))] = 1.
        self._Tss = enmap.ifft(m_fft * hp)
        self._dTy, self._dTx = gradient_flat(self.map_in, self.ldT)
        # Scale geometry for lower res map of patches
        pshp, pwcs = enmap.scale_geometry(self.map_in.shape, self.map_in.wcs,
                                          1. / self._p)
        if not self.savesteps:
            del self.map_in, m_fft
        self._T2patch = enmap.zeros(pshp, pwcs)
        self._dTxpatch = enmap.zeros(pshp, pwcs)
        self._dTypatch = enmap.zeros(pshp, pwcs)
        self._T_sub = np.zeros((pshp[-2], pshp[-1], p, p))
        for i in range(self._T2patch.shape[-2]):
            for j in range(self._T2patch.shape[-1]):
                self._dTypatch[i, j] = np.mean(self._dTy[i * p:(i + 1) * p,
                                                         j * p:(j + 1) * p])
                self._dTxpatch[i, j] = np.mean(self._dTx[i * p:(i + 1) * p,
                                                         j * p:(j + 1) * p])
                Tp = self._Tss[i * p:(i + 1) * p, j * p:(j + 1) * p]
                lsuby, lsubx = Tp.lmap()
                lsubmod = Tp.modlmap()
                lsubmod[0, 0] = 1.  # Avoid divide by 0; set fl here to 0 later
                fl = (lsubx*self._dTxpatch[i,j] + \
                        lsuby*self._dTypatch[i,j])**2 / \
                    (lsubmod * np.sqrt(self._dTxpatch[i,j]**2 + \
                                        self._dTypatch[i,j]**2))**2
                fl[0, 0] = 0.
                self._T_sub[i, j, :, :] = enmap.ifft(enmap.fft(Tp) * fl).real
                # Throw away pixels with edge effects
                self._T2patch[i, j] = np.var(self._T_sub[i, j, 3:-3, 3:-3])
        self._dT2patch = self._dTxpatch**2 + self._dTypatch**2
        if not self.savesteps:
            del self._dTypatch, self._dTxpatch, self._dTy, self._dTx, self._Tss
            del self._T_sub
예제 #6
0
def process(kouts, name="default", ellmax=None, y=False, y_ellmin=400):
    ellmax = lmax if ellmax is None else ellmax
    ksilc = enmap.zeros((Ny, Nx), wcs, dtype=np.complex128).reshape(-1)
    ksilc[modlmap.reshape(-1) < lmax] = np.nan_to_num(kouts.copy())
    ksilc = enmap.enmap(ksilc.reshape((Ny, Nx)), wcs)
    ksilc[modlmap > ellmax] = 0
    if y: ksilc[modlmap < y_ellmin] = 0
    msilc = np.nan_to_num(
        fft.ifft(ksilc, axes=[-2, -1], normalize=True).real * bmask)
    enmap.write_map(proot + "outmap_%s.fits" % name, enmap.enmap(msilc, wcs))
    p2d = fc.f2power(ksilc, ksilc)

    bin_edges = np.arange(100, 3000, 40)
    binner = stats.bin2D(modlmap, bin_edges)
    cents, p1d = binner.bin(p2d)

    try:
        # io.plot_img(np.log10(np.fft.fftshift(p2d)),proot+"ksilc_%s.png" % name,aspect='auto')
        # io.plot_img(msilc,proot+"msilc_%s.png" % name)
        # io.plot_img(msilc,proot+"lmsilc_%s.png" % name,lim=300)
        tmask = maps.mask_kspace(shape,
                                 wcs,
                                 lmin=300,
                                 lmax=5000 if not (y) else 1500)
        fmap = maps.filter_map(msilc, tmask) * bmask
        io.plot_img(fmap, proot + "hmsilc_%s.png" % name, high_res=True)
    except:
        pass

    return cents, p1d
예제 #7
0
def load_ivar(path, box=None, mJy=True, fcode=None):
    files = glob.glob(path)
    if len(files) == 1:
        ivar = enmap.read_map(files[0])
    elif len(files) == 2:
        ivar1 = enmap.read_map(files[0])
        ivar2 = enmap.read_map(files[1])
        ivar = (1 / 4 * ivar1**-1 + 1 / 4 * ivar2**-1)**-1
    else:
        raise ValueError("Unknown format")
    # ugly hack: e.g. f220 ivar is actually div which has shape
    # 3x3xpixells what we really need is the diagonal components
    if len(ivar.shape) == 4:
        ivar_correct = enmap.zeros(ivar.shape[1:], ivar.wcs)
        ivar_correct[0] = ivar[0, 0]
        ivar_correct[1] = ivar[1, 1]
        ivar_correct[2] = ivar[2, 2]
        del ivar
        ivar = ivar_correct
    if mJy:
        if fcode == 'f090':
            ivar /= (244.1 * 1e3)**2
        elif fcode == 'f150':
            ivar /= (371.74 * 1e3)**2
        elif fcode == 'f220':
            ivar /= (483.69 * 1e3)**2
        elif fcode == 'f350':
            ivar /= (287.5 * 1e3)**2
        else:
            raise ValueError("Unknown fcode")
    if box is not None: return ivar.submap(box)
    else: return ivar
예제 #8
0
    def get_lensed_cmb(self, seed=None, kappa=None, save_output=True, verbose=True, overwrite=False, dtype=np.float64):
        try:
            assert(seed is not None)
            assert(not overwrite)
            if verbose:
                print(f"trying to load saved lensed cmb. sim idx: {seed}")
            lmaps = enmap.empty((3,)+self.shape, self.wcs, dtype=dtype)
            for i, polidx in enumerate(['T','Q','U']):
                fname = self.get_output_file_name("lensed_cmb", seed, polidx=polidx)
                lmaps[i] = enmap.read_map(fname)
        except: 
            ualm = self._generate_unlensed_cmb_alm(seed=seed)
            if kappa is None:
                kappa = self._get_kappa(seed, dtype=np.float64)
            lmax = 10000
            l = np.arange(lmax+1)
            l_fact = 1/((l*(l+1))/2)
            l_fact[0] = 0

            kalm = curvedsky.map2alm(kappa, lmax=lmax)
            kalm = curvedsky.map2alm(kappa, lmax=lmax); del kappa
            kalm = hp.almxfl(kalm, l_fact)
            tshape, twcs = enmap.fullsky_geometry(res=1*utils.arcmin)
            print("start lensing")
            lmaps = lensing.lens_map_curved((3,)+tshape, twcs, kalm, ualm)[0]
            lalms = curvedsky.map2alm(lmaps, lmax=lmax, spin=0)
            lmaps = curvedsky.alm2map(lalms, enmap.zeros((3,)+self.shape, self.wcs), spin=0)
            print("finish lensing")
            if save_output:
                for i, polidx in enumerate(['T','Q','U']):    
                    fname = self.get_output_file_name("lensed_cmb", seed, polidx=polidx)
                    os.makedirs(os.path.dirname(fname), exist_ok=True)
                    enmap.write_map(fname, lmaps[i].astype(np.float32))
        return lmaps.astype(dtype)
예제 #9
0
파일: utils.py 프로젝트: victorcchan/cmbpix
def alm2stripe(alm, width, resol, proj='car'):
    """Return the stripe centered at dec=0 of the map corresponding to alm.
    
    Return a slice of the map corresponding to alm from declination -width/2 
    to +width/2, and right ascension -180deg to +180deg.
    
    Parameters
    ----------
    alm: array
        The set of alms to convert to map-space.
    width: value
        The width of the map (centered at dec=0) in degrees.
    resol: value
        The resolution of the map in arcmin.
    proj: str, default='car'
        The projection of the map. Must be compatible with pixell.
    
    Returns
    -------
    stmap: array
        The output map.
    """
    box = np.array([[-width/2,180], [width/2,-180]]) * utils.degree
    shape, wcs = enmap.geometry(pos=box, res=resol*utils.arcmin, proj=proj)
    cmap = enmap.zeros(shape, wcs)
    return curvedsky.alm2map(alm, cmap, method='cyl')
예제 #10
0
파일: noise.py 프로젝트: guanyilun/actsims
def get_n2d_data(splits,ivars,mask_a,coadd_estimator=False,flattened=False,plot_fname=None,dtype=None):
    assert np.all(np.isfinite(splits))
    assert np.all(np.isfinite(ivars))
    assert np.all(np.isfinite(mask_a))

    if coadd_estimator:
        coadd,civars = get_coadd(splits,ivars,axis=1)
        data  = splits - coadd[:,None,...]
        del coadd
    else:
        data = splits

    assert np.all(np.isfinite(data))
    if flattened:
        # sivars = np.sqrt(ivars)
        sivars   = ((1./ivars) - (1./civars[:,None,...]))**-0.5
        sivars[~np.isfinite(sivars)] = 0
        ffts = enmap.fft(data*mask_a*sivars,normalize="phys")
        if plot_fname is not None: plot(plot_fname+"_fft_maps",data*mask_a*sivars,quantile=0)
        wmaps = mask_a + enmap.zeros(ffts.shape,mask_a.wcs,dtype=dtype) # WARNING: type
        del ivars, data, splits
    else:
        assert np.all(np.isfinite(data*mask_a*ivars))
        ffts = enmap.fft(data*mask_a*ivars,normalize="phys")
        if plot_fname is not None: plot(plot_fname+"_fft_maps",data*mask_a*ivars,quantile=0)
        wmaps = ivars * mask_a
        del ivars, data, splits
    n2d = get_n2d(ffts,wmaps,coadd_estimator=coadd_estimator,plot_fname=plot_fname,dtype=dtype)
    assert np.all(np.isfinite(n2d))
    return n2d
예제 #11
0
def corr_to_mat(corr, n):
    res = enmap.zeros([n,n,n,n],dtype=corr.dtype)
    for i in range(n):
        tmp = np.roll(corr, i, 0)[:n,:]
        for j in range(n):
            res[i,j] = np.roll(tmp, j, 1)[:,:n]
    return res
예제 #12
0
파일: utils.py 프로젝트: victorcchan/cmbpix
def gradient_flat(map_in, lmax=2000):
    """Return the gradient maps of map_in.
    
    Compute the gradient of the map_in in Fourier space. Simultaneously 
    low-pass the maps such that they only include modes ell < lmax.
    
    Parameters
    ----------
    map_in: ndmap, ndarray
        The input map.
    lmax: int
        The cutoff ell for low-passing the maps.
    
    Returns
    -------
    dy: ndmap, ndarray
        The gradient in the y-direction
    dx: ndmap, ndarray
        The gradient in the x-direction
    """
    ly, lx = map_in.lmap()
    lmod = map_in.modlmap()
    lp = enmap.zeros(map_in.shape)
    lp[np.where(lmod < lmax)] = 1.
    map_fft = enmap.fft(map_in)
    dx = enmap.ifft(map_fft*lp*lx*1j).real
    dy = enmap.ifft(map_fft*lp*ly*1j).real
    return dy, dx
예제 #13
0
파일: sauron.py 프로젝트: amaurea/enlib
def build_iN_constcorr_prior(data,
                             cmb=None,
                             lknee0=2000,
                             ivars=None,
                             constcov=False):
    if ivars is None: ivars = data.ivars
    N = enmap.zeros((data.n, data.n) + data.maps.shape[-2:], data.maps.wcs,
                    data.maps.dtype)
    ref = np.mean(ivars, (-2, -1))
    ref = np.maximum(ref, np.max(ref) * 1e-4)
    norm = 1 / (ref / ivars.pixsize())
    for i, freq in enumerate(data.freqs):
        lknee = lknee0 * freq / 100
        N[i, i] = (1 + (np.maximum(0.5, data.l) / lknee)**-3.5) * norm[i]
    # Deconvolve the pixel window from the theoretical flat-at-high-l spectrum
    N = N / data.wy[:, None]**2 / data.wx[None, :]**2
    # Apply the beam-convolved cmb if available
    if cmb is not None:
        Bf = data.fconvs[:, None, None] * data.beams
        N += cmb * Bf[:, None] * Bf[None, :]
        del Bf
    if not constcov:
        N /= norm[:, None, None, None]**0.5 * norm[None, :, None, None]**0.5
    iN = array_ops.eigpow(N, -1, axes=[0, 1])
    return iN
예제 #14
0
def read_monolithic(idir, verbose=True, slice=None, dtype=None):
    # Find the range of input tiles
    ipathfmt = idir + "/tile%(y)03d_%(x)03d.fits"
    itile1, itile2 = find_tile_range(ipathfmt)

    def read(fname):
        m = enmap.read_map(fname)
        if slice: m = eval("m" + slice)
        return m

    # Read the first and last tile to get the total dimensions
    m1 = read(ipathfmt % {"y": itile1[0], "x": itile1[1]})
    m2 = read(ipathfmt % {"y": itile2[0] - 1, "x": itile2[1] - 1})
    wy, wx = m1.shape[-2:]
    oshape = tuple(
        np.array(m1.shape[-2:]) * (itile2 - itile1 - 1) +
        np.array(m2.shape[-2:]))
    if dtype is None: dtype = m1.dtype
    omap = enmap.zeros(m1.shape[:-2] + oshape, m1.wcs, dtype)
    del m1, m2
    # Now loop through all tiles and copy them in to the correct position
    for ty in range(itile1[0], itile2[0]):
        for tx in range(itile1[1], itile2[1]):
            m = read(ipathfmt % {"y": ty, "x": tx})
            oy = ty - itile1[0]
            ox = tx - itile1[1]
            omap[..., oy * wy:(oy + 1) * wy, ox * wx:(ox + 1) * wx] = m
            if verbose: print(ipathfmt % {"y": ty, "x": tx})
    return omap
예제 #15
0
    def test_b_sign(self):
        """
        We generate a random IQU map with geometry such that cdelt[0]<0
        We transform this to TEB with map2harm and map2alm followed by 
        scalar harm2map and alm2map and use these as reference T,E,B maps.
        We flip the original map along the RA direction.
        We transform this to TEB with map2harm and map2alm followed by 
        scalar harm2map and alm2map and use these as comparison T,E,B maps.
        We compare these maps.
        """
        ells,cltt,clee,clbb,clte = np.loadtxt(DATA_PREFIX+"cosmo2017_10K_acc3_lensedCls.dat",unpack=True)
        ps_cmb = np.zeros((3,3,ells.size))
        ps_cmb[0,0] = cltt
        ps_cmb[1,1] = clee
        ps_cmb[2,2] = clbb
        ps_cmb[1,0] = clte
        ps_cmb[0,1] = clte
        np.random.seed(100)

        # Curved-sky is fine
        lmax = 1000
        alm = curvedsky.rand_alm_healpy(ps_cmb,lmax=lmax)
        shape,iwcs = enmap.fullsky_geometry(res=np.deg2rad(10./60.))
        wcs = enmap.empty(shape,iwcs)[...,::-1].wcs
        shape = (3,) + shape
        imap = curvedsky.alm2map(alm,enmap.empty(shape,wcs))
        oalm = curvedsky.map2alm(imap.copy(),lmax=lmax)
        rmap = curvedsky.alm2map(oalm,enmap.empty(shape,wcs),spin=0)

        imap2 = imap.copy()[...,::-1]
        oalm = curvedsky.map2alm(imap2.copy(),lmax=lmax)
        rmap2 = curvedsky.alm2map(oalm,enmap.empty(shape,wcs),spin=0)

        assert np.all(np.isclose(rmap[0],rmap2[0]))
        assert np.all(np.isclose(rmap[1],rmap2[1]))
        assert np.all(np.isclose(rmap[2],rmap2[2]))
        

        # Flat-sky
        px = 2.0
        N = 300
        shape,iwcs = enmap.geometry(pos=(0,0),res=np.deg2rad(px/60.),shape=(300,300))
        shape = (3,) + shape
        a = enmap.zeros(shape,iwcs)
        a = a[...,::-1]
        wcs = a.wcs

        seed = 100
        imap = enmap.rand_map(shape,wcs,ps_cmb,seed=seed)
        kmap = enmap.map2harm(imap.copy())
        rmap = enmap.harm2map(kmap,spin=0) # reference map

        imap = imap[...,::-1]
        kmap = enmap.map2harm(imap.copy())
        rmap2 = enmap.harm2map(kmap,spin=0)[...,::-1] # comparison map
        
        assert np.all(np.isclose(rmap[0],rmap2[0]))
        assert np.all(np.isclose(rmap[1],rmap2[1],atol=1e0))
        assert np.all(np.isclose(rmap[2],rmap2[2],atol=1e0))
예제 #16
0
파일: pixcov.py 프로젝트: msyriac/orphics
def corr_to_mat(corr, ny,nx=None):
    if nx is None: nx = ny
    res = enmap.zeros([ny,nx,ny,nx],dtype=corr.dtype)
    for i in range(ny):
        tmp = np.roll(corr, i, 0)[:ny,:]
        for j in range(nx):
            res[i,j] = np.roll(tmp, j, 1)[:,:nx]
    return res
예제 #17
0
def load_geometries(qids):
    imap = enmap.zeros(pshape, pwcs)
    imap2 = enmap.pad(imap, 900)
    shape, wcs = imap2.shape, imap2.wcs
    gs = {}
    for qid in qids:
        gs[qid] = shape, wcs
    return gs
예제 #18
0
def make_hybrid(tfile, pfile):
    # Make a hybrid TQU map from specified temperature and polarization files
    T = enmap.read_map(tfile, sel=(0, ))
    if ("545" in tfile) or ("857" in tfile): npol = 1
    else: npol = 3
    omap = enmap.zeros((npol, ) + T.shape, T.wcs, T.dtype)
    omap[0] = T
    if npol == 3: omap[1:] = enmap.read_map(pfile, sel=(slice(1, 3), ))
    return omap
예제 #19
0
 def __init__(self,
              shape,
              wcs,
              comps="T",
              noise_model=None,
              dtype_tod=np.float32,
              dtype_map=np.float64,
              comm=mpi.COMM_WORLD,
              recenter=None,
              verbose=False):
     if shape is not None:
         shape = shape[-2:]
     if noise_model is None:
         noise_model = NmatUncorr()
     self.shape = shape
     self.wcs = wcs
     self.comm = comm
     self.comps = comps
     self.ncomp = len(comps)
     self.dtype_tod = dtype_tod
     self.dtype_map = dtype_map
     self.verbose = verbose
     if shape is None:
         self.map_rhs = None
         self.map_div = None
         self.auto_grow = True
     else:
         self.map_rhs = enmap.zeros((self.ncomp, ) + self.shape, self.wcs,
                                    self.dtype_map)
         self.map_div = enmap.zeros((self.ncomp, self.ncomp) + self.shape,
                                    self.wcs, self.dtype_map)
         self.auto_grow = False
     self.map_idiv = None
     self.noise_model = noise_model
     self.observations = []
     # Cut-related stuff
     self.junk_offs = None
     self.junk_rhs = []
     self.junk_div = []
     # Set up the degrees of freedom we will solve for
     self.dof = MultiZipper(comm=comm)
     #self.dof.add(MapZipper(self.map_rhs.shape, self.map_rhs.wcs))
     self.ready = False
     self.recenter = recenter
예제 #20
0
def read_map(fname, shape=None, wcs=None, ncomp=3):
    m = nonan(read_helper(fname, shape, wcs))
    #return m.preflat[:1]
    m = m.reshape(-1, m.shape[-2], m.shape[-1])
    if ncomp == 0: return m[0]
    if len(m) == 1:
        res = enmap.zeros((ncomp, ) + m.shape[1:], m.wcs, m.dtype)
        res[0] = m
        return res
    else:
        return m
예제 #21
0
def fcov_to_rcorr(shape,wcs,p2d,N):
    """Convert a 2D PS into a pix-pix covariance
    """
    ncomp = p2d.shape[0]
    p2d *= np.prod(shape[-2:])/enmap.area(shape,wcs)
    ocorr = enmap.zeros((ncomp,ncomp,N*N,N*N),wcs)
    for i in range(ncomp):
        for j in range(i,ncomp):
            dcorr = ps2d_to_mat(p2d[i,j].copy(), N).reshape((N*N,N*N))
            ocorr[i,j] = dcorr.copy()
            if i!=j: ocorr[j,i] = dcorr.copy()
    return ocorr
예제 #22
0
def read_div(fname, shape=None, wcs=None, ncomp=3):
    m = nonan(read_helper(fname, shape, wcs)) * 1.0
    if ncomp == 0: return m.preflat[0]
    #return m.preflat[:1][None]
    if m.ndim == 2:
        res = enmap.zeros((ncomp, ncomp) + m.shape[-2:], m.wcs, m.dtype)
        for i in range(ncomp):
            res[i, i] = m
        return res
    elif m.ndim == 4:
        return m
    else:
        raise ValueError("Wrong number of dimensions in div %s" % fname)
예제 #23
0
    def test_20_supergeom_simple(self):
        """Check that coords.get_supergeom does sensible things in simple cases."""
        for proj in ['TAN', 'CEA']:
            ra0, dec0 = CRVAL
            res = 0.01 * DEG
            wcs = coords.get_wcs_kernel(proj, ra0, dec0, res)

            wcs.wcs.crpix = (60, 70)
            map0 = enmap.zeros((100,200), wcs=wcs)
            map0[2, 3] = 10.
            map0[90, 192] = 11.

            # Extracts.
            m1 = map0[:10,:10]
            m2 = map0[-10:,-10:]
            
            # Reconstruct.
            sg = coords.get_supergeom((m1.shape, m1.wcs), (m2.shape, m2.wcs))
            mapx = enmap.zeros(*sg)
            mapx.insert(m1)
            mapx.insert(m2)
            self.assertTupleEqual(map0.shape, mapx.shape)
            self.assertTrue(np.all(mapx==map0))
예제 #24
0
def get_n2d(ffts, wmaps, plot_fname=None, coadd_estimator=False, dtype=None):
    assert np.all(np.isfinite(ffts))
    assert np.all(np.isfinite(wmaps))
    shape, wcs = ffts.shape[-2:], ffts.wcs
    modlmap = enmap.modlmap(shape, wcs)
    Ny, Nx = shape[-2:]
    nfreqs = ffts.shape[0]
    npol = ffts.shape[2]
    ncomps = nfreqs * npol

    def ncomp_to_freq_pol(index):
        ifreq = index // 3
        ipol = index % 3
        return ifreq, ipol

    n2d = enmap.zeros((ncomps, ncomps, Ny, Nx), wcs,
                      dtype=dtype)  # WARNING: type)
    pols = ['I', 'Q', 'U']
    for i in range(ncomps):
        for j in range(i, ncomps):
            ifreq, ipol = ncomp_to_freq_pol(i)
            jfreq, jpol = ncomp_to_freq_pol(j)

            isplits = ffts[ifreq, :, ipol]
            iwts = wmaps[ifreq, :, 0]
            if i != j:
                jsplits = ffts[jfreq, :, jpol]
                jwts = wmaps[jfreq, :, 0]
            else:
                jsplits = None
                jwts = None

            n2d[i, j] = noise_power(isplits,
                                    iwts,
                                    jsplits,
                                    jwts,
                                    coadd_estimator=coadd_estimator,
                                    pfunc=naive_power)
            if i != j: n2d[j, i] = n2d[i, j]
            if plot_fname is not None:
                plot("%s_%d_%s_%d_%s" \
                     % (plot_fname,ifreq,pols[ipol],
                        jfreq,pols[jpol]),
                     enmap.enmap(np.arcsinh(np.fft.fftshift(n2d[i,j])),wcs),dg=1,quantile=0)

    return n2d
예제 #25
0
def allocate_output(area):
    '''
    Parameters
    ----------
    area : str
        Absolute path to footprint map.

    Returns
    -------
    hitmap : (1, ny, nx) enmap
    cutmap : (1, ny, nx) enmap
    '''

    shape, wcs = enmap.read_map_geometry(area)
    hitmap = enmap.zeros((1, ) + shape[-2:], wcs, dtype)
    cutmap = hitmap * 0

    return hitmap, cutmap
예제 #26
0
def webget(tilepath,
           box,
           tsize=675,
           res=0.5 * utils.arcmin,
           dtype=np.float64,
           verbose=False):
    # Build the geometry representing the tiles web map. This is a normal
    # fullsky geometry, except that the origin is in the top-left corner
    # instead of the bottom-left, so we flip the y axis.
    geo = enmap.Geometry(*enmap.fullsky_geometry(res=res))[::-1]
    ntile = np.array(geo.shape) // tsize
    pbox = enmap.subinds(*geo, box, cap=False, noflip=True)
    # Set up output geometry with the same ordering as the input one. We will
    # flip it to the final ordering at the end
    ogeo = geo[pbox[0, 0]:pbox[1, 0], pbox[0, 1]:pbox[1, 1]]
    omap = enmap.zeros(*ogeo, dtype=dtype)
    # Loop through tiles
    t1 = pbox[0] // tsize
    t2 = (pbox[1] + tsize - 1) // tsize
    urls = []
    for ty in range(t1[0], t2[0]):
        ty = ty % ntile[0]
        for tx in range(t1[1], t2[1]):
            tx = tx % ntile[1]
            url = tilepath.format(y=ty, x=tx)
            urls.append(url)
    datas = download_all(urls, verbose=verbose)
    di = 0
    for ty in range(t1[0], t2[0]):
        ty = ty % ntile[0]
        y1, y2 = ty * tsize, (ty + 1) * tsize
        for tx in range(t1[1], t2[1]):
            tx = tx % ntile[1]
            x1, x2 = tx * tsize, (tx + 1) * tsize
            tgeo = geo[y1:y2, x1:x2]
            data = datas[di]
            di += 1
            imgdata = np.array(Image.open(io.BytesIO(data)))
            mapdata, mask = unpack(imgdata)
            map = enmap.enmap(mapdata, tgeo.wcs)
            omap.insert(map)
    # Flip omap to normal ordering
    omap = omap[::-1]
    return omap
예제 #27
0
def ivar_hp_to_cyl(hmap, shape, wcs):
    comm = mpi.COMM_WORLD
    rstep = 100
    dtype = np.float32
    nside = hp.npix2nside(hmap.size)
    dec, ra = enmap.posaxes(shape, wcs)
    pix = np.zeros(shape, np.int32)
    psi = np.zeros(shape, dtype)
    # Get the pixel area. We assume a rectangular pixelization, so this is just
    # a function of y
    ipixsize = 4 * np.pi / (12 * nside**2)
    opixsize = get_pixsize_rect(shape, wcs)
    nblock = (shape[-2] + rstep - 1) // rstep
    for bi in range(comm.rank, nblock, comm.size):
        if bi % comm.size != comm.rank:
            continue
        i = bi * rstep
        rdec = dec[i:i + rstep]
        opos = np.zeros((2, len(rdec), len(ra)))
        opos[0] = rdec[:, None]
        opos[1] = ra[None, :]
        ipos = opos[::-1]
        pix[i:i + rstep, :] = hp.ang2pix(nside, np.pi / 2 - ipos[1], ipos[0])
        del ipos, opos
    for i in range(0, shape[-2], rstep):
        pix[i:i + rstep] = utils.allreduce(pix[i:i + rstep], comm)
    omap = enmap.zeros((1, ) + shape, wcs, dtype)
    imap = np.array(hmap).astype(dtype)
    imap = imap[None]
    bad = hp.mask_bad(imap)
    bad |= imap <= 0
    imap[bad] = 0
    del bad
    # Read off the nearest neighbor values
    omap[:] = imap[:, pix]
    omap *= opixsize[:, None] / ipixsize
    # We ignore QU mixing during rotation for the noise level, so
    # it makes no sense to maintain distinct levels for them
    mask = omap[1:] > 0
    omap[1:] = np.mean(omap[1:], 0)
    omap[1:] *= mask
    del mask
    return omap[0]
예제 #28
0
파일: sauron.py 프로젝트: amaurea/enlib
def merge_tiles(shape, wcs, paths, margin=100, dtype=np.float32):
    # Get the pre-dimensions from the first tile
    shape = enmap.read_map_geometry(paths[0][0])[0][:-2] + shape[-2:]
    omap = enmap.zeros(shape, wcs, dtype)
    ny = len(paths)
    nx = len(paths[0])
    for ty in range(ny):
        for tx in range(nx):
            fname = paths[ty][tx]
            imap = enmap.read_map(fname)
            h, w = imap.shape[-2:]
            wy = make_edge_interp(h - 2 * margin,
                                  margin,
                                  ty > 0,
                                  ty < ny - 1,
                                  dtype=imap.dtype)
            wx = make_edge_interp(w - 2 * margin, margin, dtype=imap.dtype)
            imap = imap * wy[:, None] * wx[None, :]
            omap.insert(imap, op=np.ndarray.__iadd__)
    return omap
예제 #29
0
def eval_srcs_loop(posmap,
                   poss,
                   amps,
                   beam,
                   cres,
                   nhit,
                   cell_srcs,
                   dtype=np.float64,
                   op=np.add,
                   verbose=False):
    # Loop through each cell
    ncy, ncx = nhit.shape
    model = enmap.zeros(amps.shape[-1:] + posmap.shape[-2:], posmap.wcs, dtype)
    for cy in range(ncy):
        for cx in range(ncx):
            nsrc = nhit[cy, cx]
            if verbose:
                print("map cell %5d/%d with %5d srcs" %
                      (cy * ncx + cx + 1, ncy * ncx, nsrc))
            if nsrc == 0: continue
            srcs = cell_srcs[cy, cx, :nsrc]
            y1, y2 = (cy + 0) * cres[0], (cy + 1) * cres[0]
            x1, x2 = (cx + 0) * cres[1], (cx + 1) * cres[1]
            pixpos = posmap[:, y1:y2, x1:x2]
            srcpos = poss[srcs].T  # [2,nsrc]
            srcamp = amps[srcs].T  # [ncomp,nsrc]
            r = utils.angdist(pixpos[::-1, None, :, :], srcpos[::-1, :, None,
                                                               None])
            bpix = (r - beam[0, 0]) / (beam[0, 1] - beam[0, 0])
            # Evaluate the beam at these locations
            bval = utils.interpol(beam[1],
                                  bpix[None],
                                  mode="constant",
                                  order=1,
                                  mask_nan=False)  # [nsrc,ry,rx]
            cmodel = srcamp[:, :, None, None] * bval
            cmodel = op.reduce(cmodel, -3)
            op(model[:, y1:y2, x1:x2], cmodel, model[:, y1:y2, x1:x2])
    return model
예제 #30
0
def get_input(input_name,set_idx,sim_idx,shape,wcs):
    if input_name=='CMB':
        cmb_type = 'LensedUnabberatedCMB'
        signal_path = sints.dconfig['actsims']['signal_path']
        cmb_file   = os.path.join(signal_path, 'fullsky%s_alm_set%02d_%05d.fits' %(cmb_type, set_idx, sim_idx))
        alms = hp.fitsfunc.read_alm(cmb_file, hdu = 1)
    elif input_name=='tSZ':
        ellmax = 8101
        ells = np.arange(ellmax)
        cyy = fgs.power_y(ells)[None,None]
        cyy[0,0][ells<2] = 0
        comptony_seed = seed_tracker.get_fg_seed(set_idx, sim_idx, 'comptony')
        alms = curvedsky.rand_alm(cyy, seed = comptony_seed,lmax=ellmax)
    elif input_name=='kappa':
        signal_path = sints.dconfig['actsims']['signal_path']
        k_file   = os.path.join(signal_path, 'fullskyPhi_alm_%05d.fits' %(sim_idx))
        palms = hp.fitsfunc.read_alm(k_file)
        from pixell import lensing as plensing
        alms = plensing.phi_to_kappa(palms)
    omap = enmap.zeros((1,)+shape[-2:],wcs)
    omap = curvedsky.alm2map(np.complex128(alms),omap,spin=0)[0]
    return omap