"split_id", "model", "metric", "value", "config", ]) for split_id, res in enumerate(results): for metric_name, val in res.items(): df.loc[len(df)] = ( time, dataset, split_id, "Groundtruth", metric_name, val, vars(args), ) export_csv(df, "data/output/results.csv", append=True) if args.fit: with Timer("Fitting a hawkes process"): learner = HawkesExpKern( decays=np.full((args.n_types, args.n_types), args.exp_decay)) learner.fit(timestamps) print(learner.baseline) print(learner.adjacency)
results[metric_name] = eval_fns[metric_name](A_true, A_pred) # export evaluation results time = pd.Timestamp.now() df = pd.DataFrame( columns=[ "timestamp", "dataset", "split_id", "model", "metric", "value", "config", ] ) for metric_name, val in results.items(): df.loc[len(df)] = ( time, args.dataset, args.split_id, args.model, metric_name, val, vars(args), ) logger.info(df) export_csv(df, osp.join(args.output_dir, "results.csv"), append=True)