def __init__(self, func: callable, annotations: dict, strict: bool = True, wrap: (bool, callable) = False, name: str = None, desc: str = None): self.func = func self.annotations = ann = self.make_annotations(annotations) if strict: self.plac_func = plac.annotations(**ann)(func) else: self.plac_func = plac_annotations(wrap, **ann)(func) if name is None: name = func.__name__ self.name = name if desc is None: if func.__doc__ is not None and func.__doc__: desc = func.__doc__ else: desc = f'command `{name}` (no description)' self.desc = desc self.plac_func.__doc__ = desc
def annotate(*args, **kwargs): '''Return a decorator for plac-style argument annotations.''' return plac.annotations(*args, **kwargs)
d={} for item in patterns.A.iter(x): val=((item[0]-len(item[1][1]))+1,item[0]+1,item[1][0]) list_ent.append(val) d["entities"]=list_ent TRAIN_DATA.append((x,d) df_test=pd.read_csv('/Users/pragnyasuresh/Desktop/team_no_8/test_ner.csv') test=df_test["review"] TEST_DATA=list(test) @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("/Users/pragnyasuresh/Desktop/team_no_8", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int), ) def main(model=None, output_dir="/Users/pragnyasuresh/Desktop/team_no_8", n_iter=100): """Load the model, set up the pipeline and train the entity recognizer.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank("en") # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if "ner" not in nlp.pipe_names: ner = nlp.create_pipe("ner")
def overlap_tokens(doc, other_doc): """Get the tokens from the original Doc that are also in the comparison Doc. """ overlap = [] other_tokens = [token.text for token in other_doc] for token in doc: if token.text in other_tokens: overlap.append(token) return overlap if __name__ == '__main__': plac.call(main) @plac.annotations( model=("Model name. Defaults to blank 'en' model.", "option", "m", str), output_dir=("Optional output directory", "option", "o", Path), n_iter=("Number of training iterations", "option", "n", int)) def main(model=None, output_dir=None, n_iter=100): """Load the model, set up the pipeline and train the entity recognizer.""" if model is not None: nlp = spacy.load(model) # load existing spaCy model print("Loaded model '%s'" % model) else: nlp = spacy.blank('en') # create blank Language class print("Created blank 'en' model") # create the built-in pipeline components and add them to the pipeline # nlp.create_pipe works for built-ins that are registered with spaCy if 'ner' not in nlp.pipe_names: ner = nlp.create_pipe('ner') nlp.add_pipe(ner, last=True)