예제 #1
0
def segment_insertion_angle(skel_img, segmented_img, leaf_objects, stem_objects, size):
    """ Find leaf insertion angles in degrees of skeleton segments. Fit a linear regression line to the stem.
        Use `size` pixels on  the portion of leaf next to the stem find a linear regression line,
        and calculate angle between the two lines per leaf object.

        Inputs:
        skel_img         = Skeletonized image
        segmented_img    = Segmented image to plot slope lines and intersection angles on
        leaf_objects     = List of leaf segments
        stem_objects     = List of stem segments
        size             = Size of inner leaf used to calculate slope lines

        Returns:
        labeled_img      = Debugging image with angles labeled

        :param skel_img: numpy.ndarray
        :param segmented_img: numpy.ndarray
        :param leaf_objects: list
        :param stem_objects: list
        :param size: int
        :return labeled_img: numpy.ndarray
        """

    # Store debug
    debug = params.debug
    params.debug = None

    rows,cols = segmented_img.shape[:2]
    labeled_img = segmented_img.copy()
    segment_slopes = []
    insertion_segments = []
    insertion_hierarchies = []
    intersection_angles = []
    label_coord_x = []
    label_coord_y = []
    valid_segment = []

    # Create a list of tip tuples to use for sorting
    tips = find_tips(skel_img)
    tips = dilate(tips, 3, 1)
    tip_objects, tip_hierarchies = find_objects(tips, tips)
    tip_tuples = []
    for i, cnt in enumerate(tip_objects):
        tip_tuples.append((cnt[0][0][0], cnt[0][0][1]))

    rand_color = color_palette(len(leaf_objects))

    for i, cnt in enumerate(leaf_objects):
        # Draw leaf objects
        find_segment_tangents = np.zeros(segmented_img.shape[:2], np.uint8)
        cv2.drawContours(find_segment_tangents, leaf_objects, i, 255, 1, lineType=8)

        # Prune back ends of leaves
        pruned_segment = _iterative_prune(find_segment_tangents, size)

        # Segment ends are the portions pruned off
        segment_ends = find_segment_tangents - pruned_segment
        segment_end_obj, segment_end_hierarchy = find_objects(segment_ends, segment_ends)
        is_insertion_segment = []

        if not len(segment_end_obj) == 2:
            print("Size too large, contour with ID#", i, "got pruned away completely.")
        else:
            # The contour can have insertion angle calculated
            valid_segment.append(cnt)

            # Determine if a segment is leaf end or leaf insertion segment
            for j, obj in enumerate(segment_end_obj):

                segment_plot = np.zeros(segmented_img.shape[:2], np.uint8)
                cv2.drawContours(segment_plot, obj, -1, 255, 1, lineType=8)
                overlap_img = logical_and(segment_plot, tips)

                # If none of the tips are within a segment_end then it's an insertion segment
                if np.sum(overlap_img) == 0:
                    insertion_segments.append(segment_end_obj[j])
                    insertion_hierarchies.append(segment_end_hierarchy[0][j])

            # Store coordinates for labels
            label_coord_x.append(leaf_objects[i][0][0][0])
            label_coord_y.append(leaf_objects[i][0][0][1])

    rand_color = color_palette(len(valid_segment))

    for i, cnt in enumerate(valid_segment):
        cv2.drawContours(labeled_img, valid_segment, i, rand_color[i], params.line_thickness, lineType=8)

    # Plot stem segments
    stem_img = np.zeros(segmented_img.shape[:2], np.uint8)
    cv2.drawContours(stem_img, stem_objects, -1, 255, 2, lineType=8)
    branch_pts = find_branch_pts(skel_img)
    stem_img = stem_img + branch_pts
    stem_img = closing(stem_img)
    combined_stem, combined_stem_hier = find_objects(stem_img, stem_img)

    # Make sure stem objects are a single contour
    loop_count=0
    while len(combined_stem) > 1 and loop_count<50:
        loop_count += 1
        stem_img = dilate(stem_img, 2, 1)
        stem_img = closing(stem_img)
        combined_stem, combined_stem_hier = find_objects(stem_img, stem_img)

    if loop_count == 50:
        fatal_error('Unable to combine stem objects.')

    # Find slope of the stem
    [vx, vy, x, y] = cv2.fitLine(combined_stem[0], cv2.DIST_L2, 0, 0.01, 0.01)
    stem_slope = -vy / vx
    stem_slope = stem_slope[0]
    lefty = int((-x * vy / vx) + y)
    righty = int(((cols - x) * vy / vx) + y)
    cv2.line(labeled_img, (cols - 1, righty), (0, lefty), (150, 150, 150), 3)

    rand_color = color_palette(len(insertion_segments))

    for t, segment in enumerate(insertion_segments):
        # Find line fit to each segment
        [vx, vy, x, y] = cv2.fitLine(segment, cv2.DIST_L2, 0, 0.01, 0.01)
        slope = -vy / vx
        left_list = int((-x * vy / vx) + y)
        right_list = int(((cols - x) * vy / vx) + y)
        segment_slopes.append(slope[0])

        # Draw slope lines if possible
        if slope > 1000000 or slope < -1000000:
            print("Slope of contour with ID#", t, "is", slope, "and cannot be plotted.")
        else:
            cv2.line(labeled_img, (cols - 1, right_list), (0, left_list), rand_color[t], 1)

        # Store intersection angles between insertion segment and stem line
        intersection_angle = _slope_to_intesect_angle(slope[0], stem_slope)
        # Function measures clockwise but we want the acute angle between stem and leaf insertion
        if intersection_angle > 90:
            intersection_angle = 180 - intersection_angle
        intersection_angles.append(intersection_angle)

    segment_ids = []

    for i, cnt in enumerate(insertion_segments):
        # Label slope lines
        w = label_coord_x[i]
        h = label_coord_y[i]
        text = "{:.2f}".format(intersection_angles[i])
        cv2.putText(img=labeled_img, text=text, org=(w, h), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=params.text_size, color=(150, 150, 150), thickness=params.text_thickness)
        segment_label = "ID" + str(i)
        segment_ids.append(i)

    outputs.add_observation(variable='segment_insertion_angle', trait='segment insertion angle',
                            method='plantcv.plantcv.morphology.segment_insertion_angle', scale='degrees', datatype=list,
                            value=intersection_angles, label=segment_ids)

    # Reset debug mode
    params.debug = debug
    # Auto-increment device
    params.device += 1

    if params.debug == 'print':
        print_image(labeled_img,
                    os.path.join(params.debug_outdir, str(params.device) + '_segment_insertion_angles.png'))
    elif params.debug == 'plot':
        plot_image(labeled_img)

    return labeled_img
예제 #2
0
def main():
    # Get options
    args = options()

    # Set variables
    device = 0
    pcv.params.debug = args.debug
    img_file = args.image

    # Read image
    img, path, filename = pcv.readimage(filename=img_file, mode='rgb')

    # Process saturation channel from HSV colour space
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    lp_s = pcv.laplace_filter(s, 1, 1)
    shrp_s = pcv.image_subtract(s, lp_s)
    s_eq = pcv.hist_equalization(shrp_s)
    s_thresh = pcv.threshold.binary(gray_img=s_eq,
                                    threshold=215,
                                    max_value=255,
                                    object_type='light')
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Process green-magenta channel from LAB colour space
    b = pcv.rgb2gray_lab(rgb_img=img, channel='a')
    b_lp = pcv.laplace_filter(b, 1, 1)
    b_shrp = pcv.image_subtract(b, b_lp)
    b_thresh = pcv.threshold.otsu(b_shrp, 255, object_type='dark')

    # Create and apply mask
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    filled = pcv.fill_holes(bs)
    masked = pcv.apply_mask(img=img, mask=filled, mask_color='white')

    # Extract colour channels from masked image
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=140,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Produce and apply a mask
    opened_ab = pcv.opening(gray_img=ab)
    ab_fill = pcv.fill(bin_img=ab, size=200)
    closed_ab = pcv.closing(gray_img=ab_fill)
    masked2 = pcv.apply_mask(img=masked, mask=bs, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define region of interest (ROI)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=250,
                                            y=100,
                                            h=200,
                                            w=200)

    # Decide what objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Analyze the plant
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results of the analysis
    pcv.print_results(filename=args.result)
    pcv.output_mask(img,
                    kept_mask,
                    filename,
                    outdir=args.outdir,
                    mask_only=True)
def main():
    # Initialize options
    args = options()
    # Set PlantCV debug mode to input debug method
    pcv.params.debug = args.debug

    # Use PlantCV to read in the input image. The function outputs an image as a NumPy array, the path to the file,
    # and the image filename
    img, path, filename = pcv.readimage(filename=args.image)

    # ## Segmentation

    # ### Saturation channel
    # Convert the RGB image to HSV colorspace and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale saturation image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=80, max_value=255, object_type='light')

    # ### Blue-yellow channel
    # Convert the RGB image to LAB colorspace and extract the blue-yellow channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale blue-yellow image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=134, max_value=255, object_type='light')

    # ### Green-magenta channel
    # Convert the RGB image to LAB colorspace and extract the green-magenta channel
    a = pcv.rgb2gray_lab(rgb_img=img, channel='a')

    # In the green-magenta image the plant pixels are darker than the background. Setting object_type="dark" will
    # invert the image first and then use a binary threshold to set an inflection value where all pixels in the
    # grayscale green-magenta image below the threshold get set to zero (pure black) and all pixels at or above the
    # threshold get set to 255 (pure white)
    a_thresh = pcv.threshold.binary(gray_img=a, threshold=122, max_value=255, object_type='dark')

    # Combine the binary images for the saturation and blue-yellow channels. The "or" operator returns a binary image
    # that is white when a pixel was white in either or both input images
    bs = pcv.logical_or(bin_img1=s_thresh, bin_img2=b_thresh)

    # Combine the binary images for the combined saturation and blue-yellow channels and the green-magenta channel.
    # The "or" operator returns a binary image that is white when a pixel was white in either or both input images
    bsa = pcv.logical_or(bin_img1=bs, bin_img2=a_thresh)

    # The combined binary image labels plant pixels well but the background still has pixels labeled as foreground.
    # Small white noise (salt) in the background can be removed by filtering white objects in the image by size and
    # setting a size threshold where smaller objects can be removed
    bsa_fill1 = pcv.fill(bin_img=bsa, size=15)  # Fill small noise

    # Before more stringent size filtering is done we want to connect plant parts that may still be disconnected from
    # the main plant. Use a dilation to expand the boundary of white regions. Ksize is the size of a box scanned
    # across the image and i is the number of times a scan is done
    bsa_fill2 = pcv.dilate(gray_img=bsa_fill1, ksize=3, i=3)

    # Remove small objects by size again but use a higher threshold
    bsa_fill3 = pcv.fill(bin_img=bsa_fill2, size=250)

    # Use the binary image to identify objects or connected components.
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=bsa_fill3)

    # Because the background still contains pixels labeled as foreground, the object list contains background.
    # Because these images were collected in an automated system the plant is always centered in the image at the
    # same position each time. Define a region of interest (ROI) to set the area where we expect to find plant
    # pixels. PlantCV can make simple ROI shapes like rectangles, circles, etc. but here we use a custom ROI to fit a
    # polygon around the plant area
    roi_custom, roi_hier_custom = pcv.roi.custom(img=img, vertices=[[1085, 1560], [1395, 1560], [1395, 1685],
                                                                    [1890, 1744], [1890, 25], [600, 25], [615, 1744],
                                                                    [1085, 1685]])

    # Use the ROI to filter out objects found outside the ROI. When `roi_type = "cutto"` objects outside the ROI are
    # cropped out. The default `roi_type` is "partial" which allows objects to overlap the ROI and be retained
    roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi_custom,
                                                                  roi_hierarchy=roi_hier_custom,
                                                                  object_contour=id_objects,
                                                                  obj_hierarchy=obj_hierarchy, roi_type='cutto')

    # Filter remaining objects by size again to remove any remaining background objects
    filled_mask1 = pcv.fill(bin_img=kept_mask, size=350)

    # Use a closing operation to first dilate (expand) and then erode (shrink) the plant to fill in any additional
    # gaps in leaves or stems
    filled_mask2 = pcv.closing(gray_img=filled_mask1)

    # Remove holes or dark spot noise (pepper) in the plant binary image
    filled_mask3 = pcv.fill_holes(filled_mask2)

    # With the clean binary image identify the contour of the plant
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=filled_mask3)

    # Because a plant or object of interest may be composed of multiple contours, it is required to combine all
    # remaining contours into a single contour before measurements can be done
    obj, mask = pcv.object_composition(img=img, contours=id_objects, hierarchy=obj_hierarchy)

    # ## Measurements PlantCV has several built-in measurement or analysis methods. Here, basic measurements of size
    # and shape are done. Additional typical modules would include plant height (`pcv.analyze_bound_horizontal`) and
    # color (`pcv.analyze_color`)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Save the shape image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_shapes.png")
        pcv.print_image(img=shape_img, filename=outfile)

    # ## Morphology workflow

    # Update a few PlantCV parameters for plotting purposes
    pcv.params.text_size = 1.5
    pcv.params.text_thickness = 5
    pcv.params.line_thickness = 15

    # Convert the plant mask into a "skeletonized" image where each path along the stem and leaves are a single pixel
    # wide
    skel = pcv.morphology.skeletonize(mask=mask)

    # Sometimes wide parts of leaves or stems are skeletonized in the direction perpendicular to the main path. These
    # "barbs" or "spurs" can be removed by pruning the skeleton to remove small paths. Pruning will also separate the
    # individual path segments (leaves and stem parts)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=skel, size=30, mask=mask)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=pruned, size=3, mask=mask)

    # Leaf and stem segments above are separated but only into individual paths. We can sort the segments into stem
    # and leaf paths by identifying primary segments (stems; those that end in a branch point) and secondary segments
    # (leaves; those that begin at a branch point and end at a tip point)
    leaf_objects, other_objects = pcv.morphology.segment_sort(skel_img=pruned, objects=segment_objects, mask=mask)

    # Label the segment unique IDs
    segmented_img, labeled_id_img = pcv.morphology.segment_id(skel_img=pruned, objects=leaf_objects, mask=mask)

    # Measure leaf insertion angles. Measures the angle between a line fit through the stem paths and a line fit
    # through the first `size` points of each leaf path
    labeled_angle_img = pcv.morphology.segment_insertion_angle(skel_img=pruned, segmented_img=segmented_img,
                                                               leaf_objects=leaf_objects, stem_objects=other_objects,
                                                               size=22)

    # Save leaf angle image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_leaf_insertion_angles.png")
        pcv.print_image(img=labeled_angle_img, filename=outfile)

    # ## Other potential morphological measurements There are many other functions that extract data from within the
    # morphology sub-package of PlantCV. For our purposes, we are most interested in the relative angle between each
    # leaf and the stem which we measure with `plantcv.morphology.segment_insertion_angle`. However, the following
    # cells show some of the other traits that we are able to measure from images that can be succesfully sorted into
    # primary and secondary segments.

    # Segment the plant binary mask using the leaf and stem segments. Allows for the measurement of individual leaf
    # areas
    # filled_img = pcv.morphology.fill_segments(mask=mask, objects=leaf_objects)

    # Measure the path length of each leaf (geodesic distance)
    # labeled_img2 = pcv.morphology.segment_path_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the straight-line, branch point to tip distance (Euclidean) for each leaf
    # labeled_img3 = pcv.morphology.segment_euclidean_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the curvature of each leaf (Values closer to 1 indicate that a segment is a straight line while larger
    # values indicate the segment has more curvature)
    # labeled_img4 = pcv.morphology.segment_curvature(segmented_img=segmented_img, objects=leaf_objects)

    # Measure absolute leaf angles (angle of linear regression line fit to each leaf object) Note: negative values
    # signify leaves to the left of the stem, positive values signify leaves to the right of the stem
    # labeled_img5 = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=leaf_objects)

    # Measure leaf curvature in degrees
    # labeled_img6 = pcv.morphology.segment_tangent_angle(segmented_img=segmented_img, objects=leaf_objects, size=35)

    # Measure stem characteristics like stem angle and length
    # stem_img = pcv.morphology.analyze_stem(rgb_img=img, stem_objects=other_objects)

    # Remove unneeded observations (hack)
    _ = pcv.outputs.observations.pop("tips")
    _ = pcv.outputs.observations.pop("branch_pts")
    angles = pcv.outputs.observations["segment_insertion_angle"]["value"]
    remove_indices = []
    for i, value in enumerate(angles):
        if value == "NA":
            remove_indices.append(i)
    remove_indices.sort(reverse=True)
    for i in remove_indices:
        _ = pcv.outputs.observations["segment_insertion_angle"]["value"].pop(i)

    # ## Save the results out to file for downsteam analysis
    pcv.print_results(filename=args.result)
예제 #4
0
파일: vis.py 프로젝트: sureshacs17/firstapp
# Inputs:
#   bin_img - Binary image data
#   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
ab_fill = pcv.fill(bin_img=ab, size=200)
pcv.print_image(img=ab_fill, filename="upload/output_imgs/NoiseRe_img.jpg")

# In[17]:

# Closing filters out dark noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
closed_ab = pcv.closing(gray_img=ab_fill)
pcv.print_image(img=closed_ab, filename="upload/output_imgs/DarkNoise_img.jpg")

# In[18]:

# Apply mask (for VIS images, mask_color=white)
rgb_img = masked
masked2 = pcv.apply_mask(rgb_img, mask=ab_fill, mask_color='white')
pcv.print_image(img=masked2, filename="upload/output_imgs/Masked_img.jpg")
pcv.print_image(img=img, filename="upload/output_imgs/tag.jpg")

# In[19]:

import cv2
import numpy as np
import glob
예제 #5
0
def main():
    # Get options
    args = options()

    if args.debug:
        pcv.params.debug = args.debug  # set debug mode
        if args.debugdir:
            pcv.params.debug_outdir = args.debugdir  # set debug directory
            os.makedirs(args.debugdir, exist_ok=True)

    # pixel_resolution
    # mm
    # see pixel_resolution.xlsx for calibration curve for pixel to mm translation
    pixelresolution = 0.052

    # The result file should exist if plantcv-workflow.py was run
    if os.path.exists(args.result):
        # Open the result file
        results = open(args.result, "r")
        # The result file would have image metadata in it from plantcv-workflow.py, read it into memory
        metadata = json.load(results)
        # Close the file
        results.close()
        # Delete the file, we will create new ones
        os.remove(args.result)
        plantbarcode = metadata['metadata']['plantbarcode']['value']
        print(plantbarcode,
              metadata['metadata']['timestamp']['value'],
              sep=' - ')

    else:
        # If the file did not exist (for testing), initialize metadata as an empty string
        metadata = "{}"
        regpat = re.compile(args.regex)
        plantbarcode = re.search(regpat, args.image).groups()[0]

    # read images and create mask
    img, _, fn = pcv.readimage(args.image)
    imagename = os.path.splitext(fn)[0]

    # create mask

    # taf=filters.try_all_threshold(s_img)
    ## remove background
    s_img = pcv.rgb2gray_hsv(img, 's')
    min_s = filters.threshold_minimum(s_img)
    thresh_s = pcv.threshold.binary(s_img, min_s, 255, 'light')
    rm_bkgrd = pcv.fill_holes(thresh_s)

    ## low greenness
    thresh_s = pcv.threshold.binary(s_img, min_s + 15, 255, 'dark')
    # taf = filters.try_all_threshold(s_img)
    c = pcv.logical_xor(rm_bkgrd, thresh_s)
    cinv = pcv.invert(c)
    cinv_f = pcv.fill(cinv, 500)
    cinv_f_c = pcv.closing(cinv_f, np.ones((5, 5)))
    cinv_f_c_e = pcv.erode(cinv_f_c, 2, 1)

    ## high greenness
    a_img = pcv.rgb2gray_lab(img, channel='a')
    # taf = filters.try_all_threshold(a_img)
    t_a = filters.threshold_isodata(a_img)
    thresh_a = pcv.threshold.binary(a_img, t_a, 255, 'dark')
    thresh_a = pcv.closing(thresh_a, np.ones((5, 5)))
    thresh_a_f = pcv.fill(thresh_a, 500)
    ## combined mask
    lor = pcv.logical_or(cinv_f_c_e, thresh_a_f)
    close = pcv.closing(lor, np.ones((2, 2)))
    fill = pcv.fill(close, 800)
    erode = pcv.erode(fill, 3, 1)
    fill2 = pcv.fill(erode, 1200)
    # dilate = pcv.dilate(fill2,2,2)
    mask = fill2

    final_mask = np.zeros_like(mask)

    # Compute greenness
    # split color channels
    b, g, r = cv2.split(img)
    # print green intensity
    # g_img = pcv.visualize.pseudocolor(g, cmap='Greens', background='white', min_value=0, max_value=255, mask=mask, axes=False)

    # convert color channels to int16 so we can add them (values will be greater than 255 which is max of current uint8 format)
    g = g.astype('uint16')
    r = r.astype('uint16')
    b = b.astype('uint16')
    denom = g + r + b

    # greenness index
    out_flt = np.zeros_like(denom, dtype='float32')
    # divide green by sum of channels to compute greenness index with values 0-1
    gi = np.divide(g,
                   denom,
                   out=out_flt,
                   where=np.logical_and(denom != 0, mask > 0))

    # find objects
    c, h = pcv.find_objects(img, mask)
    rc, rh = pcv.roi.multi(img, coord=[(1300, 900), (1300, 2400)], radius=350)
    # Turn off debug temporarily, otherwise there will be a lot of plots
    pcv.params.debug = None
    # Loop over each region of interest
    i = 0
    rc_i = rc[i]
    for i, rc_i in enumerate(rc):
        rh_i = rh[i]

        # Add ROI number to output. Before roi_objects so result has NA if no object.
        pcv.outputs.add_observation(variable='roi',
                                    trait='roi',
                                    method='roi',
                                    scale='int',
                                    datatype=int,
                                    value=i,
                                    label='#')

        roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects(
            img,
            roi_contour=rc_i,
            roi_hierarchy=rh_i,
            object_contour=c,
            obj_hierarchy=h,
            roi_type='partial')

        if obj_area == 0:

            print('\t!!! No object found in ROI', str(i))
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=0,
                label='sq mm')

        else:

            # Combine multiple objects
            # ple plant objects within an roi together
            plant_object, plant_mask = pcv.object_composition(
                img=img, contours=roi_obj, hierarchy=hierarchy_obj)

            final_mask = pcv.image_add(final_mask, plant_mask)

            # Save greenness for individual ROI
            grnindex = np.mean(gi[np.where(plant_mask > 0)])
            pcv.outputs.add_observation(
                variable='greenness_index',
                trait='mean normalized greenness index',
                method='g/sum(b+g+r)',
                scale='[0,1]',
                datatype="<class 'float'>",
                value=float(grnindex),
                label='/1')

            # Analyze all colors
            hist = pcv.analyze_color(img, plant_mask, 'all')

            # Analyze the shape of the current plant
            shape_img = pcv.analyze_object(img, plant_object, plant_mask)
            plant_area = pcv.outputs.observations['area'][
                'value'] * pixelresolution**2
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=plant_area,
                label='sq mm')

        # end if-else

        # At this point we have observations for one plant
        # We can write these out to a unique results file
        # Here I will name the results file with the ROI ID combined with the original result filename
        basename, ext = os.path.splitext(args.result)
        filename = basename + "-roi" + str(i) + ext
        # Save the existing metadata to the new file
        with open(filename, "w") as r:
            json.dump(metadata, r)
        pcv.print_results(filename=filename)
        # The results are saved, now clear out the observations so the next loop adds new ones for the next plant
        pcv.outputs.clear()

        if args.writeimg and obj_area != 0:
            imgdir = os.path.join(args.outdir, 'shape_images', plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                shape_img,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-shape.png'))

            imgdir = os.path.join(args.outdir, 'colorhist_images',
                                  plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                hist,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-colorhist.png'))

# end roi loop

    if args.writeimg:
        # save grnness image of entire tray
        imgdir = os.path.join(args.outdir, 'pseudocolor_images', plantbarcode)
        os.makedirs(imgdir, exist_ok=True)
        gi_img = pcv.visualize.pseudocolor(gi,
                                           obj=None,
                                           mask=final_mask,
                                           cmap='viridis',
                                           axes=False,
                                           min_value=0.3,
                                           max_value=0.6,
                                           background='black',
                                           obj_padding=0)
        gi_img = add_scalebar(gi_img,
                              pixelresolution=pixelresolution,
                              barwidth=20,
                              barlocation='lower left')
        gi_img.set_size_inches(6, 6, forward=False)
        gi_img.savefig(os.path.join(imgdir, imagename + '-greenness.png'),
                       bbox_inches='tight')
        gi_img.clf()
예제 #6
0
def root():
    				uploaded_file = st.file_uploader("Choose an image...", type="jpg")
    				if uploaded_file is not None:
    					inp = Image.open(uploaded_file)
    					inp.save('input.jpg')
    					img, path, filename = pcv.readimage(filename='input.jpg')
    					image = Image.open('input.jpg')
    					st.image(image, caption='Original Image',use_column_width=True)
                    # Convert RGB to HSV and extract the saturation channel
    # Inputs:
    #   rgb_image - RGB image data 
    #   channel - Split by 'h' (hue), 's' (saturation), or 'v' (value) channel
					
    					s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    					pcv.print_image(s, "plant/rgbtohsv.png")
    					image = Image.open('plant/rgbtohsv.png')
    					st.image(image, caption='RGB to HSV', use_column_width=True)
    					s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')
    					pcv.print_image(s_thresh, "plant/binary_threshold.png")
    					image = Image.open('plant/binary_threshold.png')
    					st.image(image, caption='Binary Threshold',use_column_width=True)
                   
    # Median Blur to clean noise 

    # Inputs: 
    #   gray_img - Grayscale image data 
    #   ksize - Kernel size (integer or tuple), (ksize, ksize) box if integer input,
    #           (n, m) box if tuple input 

    					s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    					pcv.print_image(s_mblur, "plant/Median_blur.png")
    					image = Image.open('plant/Median_blur.png')
    					st.image(image, caption='Median Blur',use_column_width=True)
                    
     # An alternative to using median_blur is gaussian_blur, which applies 
    # a gaussian blur filter to the image. Depending on the image, one 
    # technique may be more effective than others. 

    # Inputs:
    #   img - RGB or grayscale image data
    #   ksize - Tuple of kernel size
    #   sigma_x - Standard deviation in X direction; if 0 (default), 
    #            calculated from kernel size
    #   sigma_y - Standard deviation in Y direction; if sigmaY is 
    #            None (default), sigmaY is taken to equal sigmaX
                
    					gaussian_img = pcv.gaussian_blur(img=s_thresh, ksize=(5, 5), sigma_x=0, sigma_y=None)
    # Convert RGB to LAB and extract the blue channel ('b')

    # Input:
    #   rgb_img - RGB image data 
    #   channel- Split by 'l' (lightness), 'a' (green-magenta), or 'b' (blue-yellow) channel
    					b = pcv.rgb2gray_lab(rgb_img=img, channel='b')
    					b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, 
                                object_type='light')
                     # Join the threshold saturation and blue-yellow images with a logical or operation 

    # Inputs: 
    #   bin_img1 - Binary image data to be compared to bin_img2
    #   bin_img2 - Binary image data to be compared to bin_img1

    
    					bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    					pcv.print_image(bs, "plant/threshold comparison.png")
    					image = Image.open('plant/threshold comparison.png')
    					st.image(image, caption='Threshold Comparision',use_column_width=True)
                    
 # Appy Mask (for VIS images, mask_color='white')

    # Inputs:
    #   img - RGB or grayscale image data 
    #   mask - Binary mask image data 
    #   mask_color - 'white' or 'black' 
    
    					masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')
    					pcv.print_image(masked, "plant/Apply_mask.png")
    					image = Image.open('plant/Apply_mask.png')
    					st.image(image, caption='Applied Mask',use_column_width=True)
                   # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    					masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    					masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
                     # Threshold the green-magenta and blue images
    					maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    					maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135,max_value=255, object_type='light')
    					maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')
    					pcv.print_image( maskeda_thresh, "plant/maskeda_thresh.png")
    					pcv.print_image(maskeda_thresh1, "plant/maskeda_thresh1.png")
    					pcv.print_image(maskedb_thresh, "plant/maskedb_thresh1.png")
  
    					image = Image.open('plant/maskeda_thresh.png')
    					st.image(image, caption='Threshold green-magneta and blue image',use_column_width=True)


   # Join the thresholded saturation and blue-yellow images (OR)
    					ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    					ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)
        # Opening filters out bright noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					opened_ab = pcv.opening(gray_img=ab)

# Depending on the situation it might be useful to use the 
# exclusive or (pcv.logical_xor) function. 

# Inputs: 
#   bin_img1 - Binary image data to be compared to bin_img2
#   bin_img2 - Binary image data to be compared to bin_img1
    					xor_img = pcv.logical_xor(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
# Fill small objects (reduce image noise) 

# Inputs: 
#   bin_img - Binary image data 
#   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    					ab_fill = pcv.fill(bin_img=ab, size=200)
# Closing filters out dark noise from an image.

# Inputs:
#   gray_img - Grayscale or binary image data
#   kernel - Optional neighborhood, expressed as an array of 1's and 0's. If None (default),
#   uses cross-shaped structuring element.
    					closed_ab = pcv.closing(gray_img=ab_fill)
# Apply mask (for VIS images, mask_color=white)
    					masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')
# Identify objects
# Inputs: 
#   img - RGB or grayscale image data for plotting 
#   mask - Binary mask used for detecting contours 
    					id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)
# Define the region of interest (ROI) 
# Inputs: 
#   img - RGB or grayscale image to plot the ROI on 
#   x - The x-coordinate of the upper left corner of the rectangle 
#   y - The y-coordinate of the upper left corner of the rectangle 
#   h - The height of the rectangle 
#   w - The width of the rectangle 
    					roi1, roi_hierarchy= pcv.roi.rectangle(img=masked2, x=50, y=50, h=100, w=100)
# Decide which objects to keep
# Inputs:
#    img            = img to display kept objects
#    roi_contour    = contour of roi, output from any ROI function
#    roi_hierarchy  = contour of roi, output from any ROI function
#    object_contour = contours of objects, output from pcv.find_objects function
#    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
#    roi_type       = 'partial' (default, for partially inside the ROI), 'cutto', or 
#                     'largest' (keep only largest contour)
    					roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, 
                                                               roi_hierarchy=roi_hierarchy, 
                                                               object_contour=id_objects, 
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')
# Object combine kept objects
# Inputs:
#   img - RGB or grayscale image data for plotting 
#   contours - Contour list 
#   hierarchy - Contour hierarchy array 
    					obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)
############### Analysis ################ 
# Find shape properties, data gets stored to an Outputs class automatically
# Inputs:
#   img - RGB or grayscale image data 
#   obj- Single or grouped contour object
#   mask - Binary image mask to use as mask for moments analysis 
    					analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    					pcv.print_image(analysis_image, "plant/analysis_image.png")
    					image = Image.open('plant/analysis_image.png')
    					st.image(image, caption='Analysis_image',use_column_width=True)
# Shape properties relative to user boundary line (optional)
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
#   line_position - Position of boundary line (a value of 0 would draw a line 
#                   through the bottom of the image) 
    					boundary_image2 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, 
                                               line_position=370)
    					pcv.print_image(boundary_image2, "plant/boundary_image2.png")
    					image = Image.open('plant/boundary_image2.png')
    					st.image(image, caption='Boundary Image',use_column_width=True)
# Determine color properties: Histograms, Color Slices and Pseudocolored Images, output color analyzed images (optional)
# Inputs:
#   rgb_img - RGB image data
#   mask - Binary mask of selected contours 
#   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
#                    This is the data to be printed to the SVG histogram file  
    					color_histogram = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type='all')
# Print the histogram out to save it 
    					pcv.print_image(img=color_histogram, filename="plant/vis_tutorial_color_hist.jpg")
    					image = Image.open('plant/vis_tutorial_color_hist.jpg')
    					st.image(image, caption='Color Histogram',use_column_width=True)
# Divide plant object into twenty equidistant bins and assign pseudolandmark points based upon their 
# actual (not scaled) position. Once this data is scaled this approach may provide some information 
# regarding shape independent of size.
# Inputs:
#   img - RGB or grayscale image data 
#   obj - Single or grouped contour object 
#   mask - Binary mask of selected contours 
    					top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
    					top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img, obj=obj, mask=mask)
# The print_results function will take the measurements stored when running any (or all) of these functions, format, 
# and print an output text file for data analysis. The Outputs class stores data whenever any of the following functions
# are ran: analyze_bound_horizontal, analyze_bound_vertical, analyze_color, analyze_nir_intensity, analyze_object, 
# fluor_fvfm, report_size_marker_area, watershed. If no functions have been run, it will print an empty text file 
    					pcv.print_results(filename='vis_tutorial_results.txt')
def segment_on_dt(a, img):

    #logAnd = plantcv.logical_and(a, img)
    #cv2.imshow('logical', logAnd)
    #cv2.waitKey(0)
    gauss = pcv.gaussian_blur(a, (5, 5), 0, 0)
    edges = pcv.canny_edge_detect(a,
                                  mask=None,
                                  sigma=2,
                                  low_thresh=15,
                                  high_thresh=40,
                                  thickness=2,
                                  mask_color=None,
                                  use_quantiles=False)
    cv2.imshow('canny', edges)
    cv2.waitKey(0)
    canny_dilate = cv2.dilate(edges, None, iterations=1)
    cv2.imshow("canny dilate", canny_dilate)
    cv2.waitKey(0)

    dilate = cv2.dilate(img, None, iterations=1)

    border = dilate - cv2.erode(dilate, None, iterations=2)
    cv2.imshow('border', border)
    cv2.waitKey(0)
    border = cv2.bitwise_or(border, canny_dilate, mask=dilate)
    cv2.imshow("border", border)
    cv2.waitKey(0)

    dt = cv2.distanceTransform(img, 1, 5)
    cv2.imshow('dist trans', dt)
    cv2.waitKey(0)
    dt = ((dt - dt.min()) / (dt.max() - dt.min()) * 255).astype(numpy.uint8)
    cv2.imshow('minmax', dt)
    cv2.waitKey(0)
    _, dt = cv2.threshold(dt, 45, 255, cv2.THRESH_BINARY)
    cv2.imshow('thresh', dt)
    cv2.waitKey(0)

    seg = cv2.subtract(dt, border)
    cv2.imshow('thresh - border', seg)
    cv2.waitKey(0)

    seg1 = cv2.erode(seg, None, iterations=2)
    cv2.imshow('erode', seg1)
    cv2.waitKey(0)

    fill_image = pcv.closing(seg1)
    cv2.imshow('Closing', fill_image)
    cv2.waitKey(0)

    lbl, ncc = label(fill_image)
    lbl = lbl * (255 / (ncc + 1))
    # Completing the markers now.
    lbl[border == 255] = 255

    print(ncc)

    lbl = lbl.astype(numpy.int32)
    #cv2.watershed(a, lbl)

    lbl[lbl == -1] = 0
    lbl = lbl.astype(numpy.uint8)
    return 255 - lbl
def main():

    # Get options
    args = options()
    # plt.rcParams["font.family"] = "Arial"  # All text is Arial

    # pixel_resolution
    cppc.pixelresolution = 0.052  #mm
    # see pixel_resolution.xlsx for calibration curve for pixel to mm translation

    pcv.params.text_size = 12
    pcv.params.text_thickness = 12

    if args.debug:
        pcv.params.debug = args.debug  # set debug mode
        if args.debugdir:
            pcv.params.debug_outdir = args.debugdir  # set debug directory
            os.makedirs(args.debugdir, exist_ok=True)

    args = cppc.roi.copy_metadata(args)

    # read images and create mask
    img, _, fn = pcv.readimage(args.image)
    args.imagename = os.path.splitext(fn)[0]
    # cps=pcv.visualize.colorspaces(img)

    # create mask
    if args.pdfs:  #if not provided in run_workflows.sh then will be False
        print('naive bayes classification')

        # Classify each pixel as plant or background (background and system components)
        img_blur = pcv.gaussian_blur(img, (7, 7))
        masks = pcv.naive_bayes_classifier(rgb_img=img_blur,
                                           pdf_file=args.pdfs)
        mask = masks['Plant']

        # save masks
        colored_img = pcv.visualize.colorize_masks(
            masks=[masks['Plant'], masks['Background'], masks['Blue']],
            colors=['green', 'black', 'blue'])
        # Print out the colorized figure that got created
        imgdir = os.path.join(args.outdir, 'bayesmask_images')
        os.makedirs(imgdir, exist_ok=True)
        pcv.print_image(
            colored_img, os.path.join(imgdir,
                                      args.imagename + '-bayesmask.png'))

    else:
        print('\nthreshold masking')

        # tray mask
        # _, rm, _, _ = pcv.rectangle_mask(img, (425,350), (2100,3050),'white')
        # img_tray = pcv.apply_mask(img, rm, 'black')

        # dark green
        # imgt_h = pcv.rgb2gray_hsv(img,'h')
        mask1, img1 = pcv.threshold.custom_range(img, [15, 0, 0],
                                                 [60, 255, 255], 'hsv')
        mask1 = pcv.fill(mask1, 200)
        mask1 = pcv.closing(mask1, pcv.get_kernel((5, 5), 'rectangle'))

        mask = mask1
        # img1 = pcv.apply_mask(img, mask1, 'black')

        # # remove faint algae
        # img1_a = pcv.rgb2gray_lab(img1,'b')
        # # img1_b = pcv.rgb2gray_lab(img1,'b')
        # th = filters.threshold_otsu(img1_a)
        # algaemask = pcv.threshold.binary(img1_a,th,255,'light')
        # # bmask, _ = pcv.threshold.custom_range(img1,[0,0,100],[120,120,255], 'RGB')
        # img2 = pcv.apply_mask(img1,algaemask,'black')

        # mask = pcv.rgb2gray(img2)
        # mask[mask > 0] = 255
        # pcv.plot_image(mask)

    # find objects based on threshold mask
    c, h = pcv.find_objects(img, mask)
    # setup roi based on pot locations
    rc, rh = pcv.roi.multi(img, coord=[(1250, 1000), (1250, 2300)], radius=300)
    # Turn off debug temporarily if activated, otherwise there will be a lot of plots
    pcv.params.debug = None
    # Loop over each region of interest
    # i=0
    # rc_i = rc[i]
    # rh_i = rh[i]
    final_mask = cppc.roi.iterate_rois(img,
                                       c,
                                       h,
                                       rc,
                                       rh,
                                       args=args,
                                       masked=True,
                                       gi=True,
                                       shape=True,
                                       hist=True,
                                       hue=True)
예제 #9
0
def segment_insertion_angle(skel_img, segmented_img, leaf_objects,
                            leaf_hierarchies, stem_objects, size):
    """ Find leaf insertion angles in degrees of skeleton segments. Fit a linear regression line to the stem.
        Use `size` pixels on  the portion of leaf next to the stem find a linear regression line,
        and calculate angle between the two lines per leaf object.

        Inputs:
        skel_img         = Skeletonized image
        segmented_img    = Segmented image to plot slope lines and intersection angles on
        leaf_objects     = List of leaf segments
        leaf_hierarchies = Leaf contour hierarchy NumPy array
        stem_objects     = List of stem segments
        size             = Size of inner leaf used to calculate slope lines

        Returns:
        insertion_angle_header = Leaf insertion angle headers
        insertion_angle_data   = Leaf insertion angle values
        labeled_img            = Debugging image with angles labeled

        :param skel_img: numpy.ndarray
        :param segmented_img: numpy.ndarray
        :param leaf_objects: list
        :param leaf_hierarchies: numpy.ndarray
        :param stem_objects: list
        :param size: int
        :return insertion_angle_header: list
        :return insertion_angle_data: list
        :return labeled_img: numpy.ndarray
        """

    # Store debug
    debug = params.debug
    params.debug = None

    rows, cols = segmented_img.shape[:2]
    labeled_img = segmented_img.copy()
    segment_slopes = []
    insertion_segments = []
    insertion_hierarchies = []
    intersection_angles = []
    label_coord_x = []
    label_coord_y = []

    # Create a list of tip tuples to use for sorting
    tips = find_tips(skel_img)
    tip_objects, tip_hierarchies = find_objects(tips, tips)
    tip_tuples = []
    for i, cnt in enumerate(tip_objects):
        tip_tuples.append((cnt[0][0][0], cnt[0][0][1]))

    rand_color = color_palette(len(leaf_objects))

    for i, cnt in enumerate(leaf_objects):
        # Draw leaf objects
        find_segment_tangents = np.zeros(segmented_img.shape[:2], np.uint8)
        cv2.drawContours(find_segment_tangents,
                         leaf_objects,
                         i,
                         255,
                         1,
                         lineType=8,
                         hierarchy=leaf_hierarchies)
        cv2.drawContours(labeled_img,
                         leaf_objects,
                         i,
                         rand_color[i],
                         params.line_thickness,
                         lineType=8,
                         hierarchy=leaf_hierarchies)

        # Prune back ends of leaves
        pruned_segment = prune(find_segment_tangents, size)

        # Segment ends are the portions pruned off
        segment_ends = find_segment_tangents - pruned_segment
        segment_end_obj, segment_end_hierarchy = find_objects(
            segment_ends, segment_ends)
        is_insertion_segment = []

        if not len(segment_end_obj) == 2:
            print("Size too large, contour with ID#", i,
                  "got pruned away completely.")
        else:
            # Determine if a segment is leaf end or leaf insertion segment
            for j, obj in enumerate(segment_end_obj):

                cnt_as_tuples = []
                num_pixels = len(obj)
                count = 0

                # Turn each contour into a list of tuples (can't search for list of coords, so reformat)
                while num_pixels > count:
                    x_coord = obj[count][0][0]
                    y_coord = obj[count][0][1]
                    cnt_as_tuples.append((x_coord, y_coord))
                    count += 1

                for tip_tups in tip_tuples:
                    # If a tip is inside the list of contour tuples then it is a leaf end segment
                    if tip_tups in cnt_as_tuples:
                        is_insertion_segment.append(False)
                    else:
                        is_insertion_segment.append(True)

                # If none of the tips are within a segment_end then it's an insertion segment
                if all(is_insertion_segment):
                    insertion_segments.append(segment_end_obj[j])
                    insertion_hierarchies.append(segment_end_hierarchy[0][j])

        # Store coordinates for labels
        label_coord_x.append(leaf_objects[i][0][0][0])
        label_coord_y.append(leaf_objects[i][0][0][1])

    # Plot stem segments
    stem_img = np.zeros(segmented_img.shape[:2], np.uint8)
    cv2.drawContours(stem_img, stem_objects, -1, 255, 2, lineType=8)
    branch_pts = find_branch_pts(skel_img)
    stem_img = stem_img + branch_pts
    stem_img = closing(stem_img)
    combined_stem, combined_stem_hier = find_objects(stem_img, stem_img)

    # Make sure stem objects are a single contour
    while len(combined_stem) > 1:
        stem_img = dilate(stem_img, 2, 1)
        stem_img = closing(stem_img)
        combined_stem, combined_stem_hier = find_objects(stem_img, stem_img)

    # Find slope of the stem
    [vx, vy, x, y] = cv2.fitLine(combined_stem[0], cv2.DIST_L2, 0, 0.01, 0.01)
    stem_slope = -vy / vx
    stem_slope = stem_slope[0]
    lefty = int((-x * vy / vx) + y)
    righty = int(((cols - x) * vy / vx) + y)
    cv2.line(labeled_img, (cols - 1, righty), (0, lefty), (150, 150, 150), 3)

    for t, segment in enumerate(insertion_segments):
        # Find line fit to each segment
        [vx, vy, x, y] = cv2.fitLine(segment, cv2.DIST_L2, 0, 0.01, 0.01)
        slope = -vy / vx
        left_list = int((-x * vy / vx) + y)
        right_list = int(((cols - x) * vy / vx) + y)
        segment_slopes.append(slope[0])

        # Draw slope lines if possible
        if slope > 1000000 or slope < -1000000:
            print("Slope of contour with ID#", t, "is", slope,
                  "and cannot be plotted.")
        else:
            cv2.line(labeled_img, (cols - 1, right_list), (0, left_list),
                     rand_color[t], 1)

        # Store intersection angles between insertion segment and stem line
        intersection_angle = _slope_to_intesect_angle(slope[0], stem_slope)
        # Function measures clockwise but we want the acute angle between stem and leaf insertion
        if intersection_angle > 90:
            intersection_angle = 180 - intersection_angle
        intersection_angles.append(intersection_angle)

    insertion_angle_header = ['HEADER_INSERTION_ANGLE']
    insertion_angle_data = ['INSERTION_ANGLE_DATA']

    for i, cnt in enumerate(insertion_segments):
        # Label slope lines
        w = label_coord_x[i]
        h = label_coord_y[i]
        text = "{:.2f}".format(intersection_angles[i])
        cv2.putText(img=labeled_img,
                    text=text,
                    org=(w, h),
                    fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                    fontScale=.55,
                    color=(150, 150, 150),
                    thickness=2)
        segment_label = "ID" + str(i)
        insertion_angle_header.append(segment_label)
    insertion_angle_data.extend(intersection_angles)

    if 'morphology_data' not in outputs.measurements:
        outputs.measurements['morphology_data'] = {}
    outputs.measurements['morphology_data'][
        'segment_insertion_angles'] = intersection_angles

    # Reset debug mode
    params.debug = debug
    # Auto-increment device
    params.device += 1

    if params.debug == 'print':
        print_image(
            labeled_img,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_segment_insertion_angles.png'))
    elif params.debug == 'plot':
        plot_image(labeled_img)

    return insertion_angle_header, insertion_angle_data, labeled_img