예제 #1
0
 def test_invalid_kappa(self):
     """
     Checks if function raises error when kappa <= 3/2 is passed as an
     argument.
     """
     with pytest.raises(ValueError):
         kappa_thermal_speed(self.T_e, self.kappaInvalid, particle=self.particle)
     return
예제 #2
0
 def test_invalid_method(self):
     """
     Checks if function raises error when invalid method is passed as an
     argument.
     """
     with pytest.raises(ValueError):
         kappa_thermal_speed(
             self.T_e, self.kappa, particle=self.particle, method="invalid"
         )
     return
예제 #3
0
 def test_mean1(self):
     """
     Tests if expected value is returned for a set of regular inputs.
     """
     known1 = kappa_thermal_speed(self.T_e,
                                  self.kappa,
                                  particle=self.particle,
                                  method="mean_magnitude")
     errStr = (f"Kappa thermal velocity should be {self.mean1True} "
               f"and not {known1.si.value}.")
     assert np.isclose(known1.value, self.mean1True, rtol=1e-8,
                       atol=0.0), errStr
     return
예제 #4
0
def kappa_velocity_3D(
    vx,
    vy,
    vz,
    T,
    kappa,
    particle="e",
    vx_drift=0,
    vy_drift=0,
    vz_drift=0,
    vTh=np.nan,
    units="units",
):
    r"""
    Return the probability density function for finding a particle with
    velocity components `v_x`, `v_y`, and `v_z`in m/s in a suprathermal
    plasma of temperature `T` and parameter 'kappa' which follows the
    3D Kappa distribution function. This function assumes Cartesian
    coordinates.

    Parameters
    ----------
    vx: ~astropy.units.Quantity
        The velocity in x-direction units convertible to m/s.

    vy: ~astropy.units.Quantity
        The velocity in y-direction units convertible to m/s.

    vz: ~astropy.units.Quantity
        The velocity in z-direction units convertible to m/s.

    T: ~astropy.units.Quantity
        The temperature, preferably in Kelvin.

    kappa: ~astropy.units.Quantity
        The kappa parameter is a dimensionless number which sets the slope
        of the energy spectrum of suprathermal particles forming the tail
        of the Kappa velocity distribution function. Kappa must be greater
        than :math:`3/2`.

    particle: str, optional
        Representation of the particle species(e.g., 'p' for protons, 'D+'
        for deuterium, or 'He-4 +1' for :math:`He_4^{+1}` : singly ionized
        helium-4)), which defaults to electrons.

    vx_drift: ~astropy.units.Quantity, optional
        The drift velocity in x-direction units convertible to m/s.

    vy_drift: ~astropy.units.Quantity, optional
        The drift velocity in y-direction units convertible to m/s.

    vz_drift: ~astropy.units.Quantity, optional
        The drift velocity in z-direction units convertible to m/s.

    vTh: ~astropy.units.Quantity, optional
        Thermal velocity (most probable) in m/s. This is used for
        optimization purposes to avoid re-calculating `vTh`, for example
        when integrating over velocity-space.

    units: str, optional
        Selects whether to run function with units and unit checks (when
        equal to "units") or to run as unitless (when equal to "unitless").
        The unitless version is substantially faster for intensive
        computations.

    Returns
    -------
    f : ~astropy.units.Quantity
        Probability density in Velocity^-1, normalized so that:
        :math:`\iiint_{0}^{\infty} f(\vec{v}) d\vec{v} = 1`

    Raises
    ------
    TypeError
        The parameter arguments are not Quantities and
        cannot be converted into Quantities.

    ~astropy.units.UnitConversionError
        If the parameters is not in appropriate units.

    ValueError
        If the temperature is negative, or the particle mass or charge state
        cannot be found.

    Notes
    -----
    In three dimensions, the Kappa velocity distribution function describing
    the distribution of particles with speed :math:`v` in a plasma with
    temperature :math:`T` and suprathermal parameter :math:`\kappa` is given by:

    .. math::

       f = A_\kappa \left(1 + \frac{(\vec{v} -
       \vec{V_{drift}})^2}{\kappa v_{Th},\kappa^2}\right)^{-(\kappa + 1)}

    where :math:`v_{Th},\kappa` is the kappa thermal speed
    and :math:`A_\kappa = \frac{1}{2 \pi (\kappa v_{Th},\kappa^2)^{3/2}}
    \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2) \Gamma(3/2)}` is the
    normalization constant.

    As :math:`\kappa` approaches infinity, the kappa distribution function
    converges to the Maxwellian distribution function.

    See also
    --------
    kappa_velocity_1D
    kappa_thermal_speed

    Example
    -------
    >>> from astropy import units as u
    >>> v=1 * u.m / u.s
    >>> kappa_velocity_3D(vx=v,
    ... vy=v,
    ... vz=v,
    ... T=30000 * u.K,
    ... kappa=4,
    ... particle='e',
    ... vx_drift=0 * u.m / u.s,
    ... vy_drift=0 * u.m / u.s,
    ... vz_drift=0 * u.m / u.s)
    <Quantity 3.7833...e-19 s3 / m3>
    """
    # must have kappa > 3/2 for distribution function to be valid
    if kappa <= 3 / 2:
        raise ValueError(f"Must have kappa > 3/2, instead of {kappa}.")
    if units == "units":
        # unit checks and conversions
        # checking velocity units
        vx = vx.to(u.m / u.s)
        vy = vy.to(u.m / u.s)
        vz = vz.to(u.m / u.s)
        # Catching case where drift velocities have default values, they
        # need to be assigned units
        vx_drift = _v_drift_units(vx_drift)
        vy_drift = _v_drift_units(vy_drift)
        vz_drift = _v_drift_units(vz_drift)
        # convert temperature to Kelvins
        T = T.to(u.K, equivalencies=u.temperature_energy())
        if np.isnan(vTh):
            # get thermal velocity and thermal velocity squared
            vTh = parameters.kappa_thermal_speed(T, kappa, particle=particle)
        elif not np.isnan(vTh):
            # check units of thermal velocity
            vTh = vTh.to(u.m / u.s)
    elif np.isnan(vTh) and units == "unitless":
        # assuming unitless temperature is in Kelvins
        vTh = parameters.kappa_thermal_speed(T * u.K, kappa,
                                             particle=particle).si.value
    # getting square of thermal velocity
    vThSq = vTh**2
    # Get square of relative particle velocity
    vSq = (vx - vx_drift)**2 + (vy - vy_drift)**2 + (vz - vz_drift)**2
    # calculating distribution function
    expTerm = (1 + vSq / (kappa * vThSq))**(-(kappa + 1))
    coeff1 = 1 / (2 * np.pi * (kappa * vThSq)**(3 / 2))
    coeff2 = gamma(kappa + 1) / (gamma(kappa - 1 / 2) * gamma(3 / 2))
    distFunc = coeff1 * coeff2 * expTerm
    if units == "units":
        return distFunc.to((u.s / u.m)**3)
    elif units == "unitless":
        return distFunc
예제 #5
0
def kappa_velocity_1D(v,
                      T,
                      kappa,
                      particle="e",
                      v_drift=0,
                      vTh=np.nan,
                      units="units"):
    r"""
    Return the probability density at the velocity `v` in m/s
    to find a particle `particle` in a plasma of temperature `T`
    following the Kappa distribution function in 1D. The slope of the
    tail of the Kappa distribution function is set by 'kappa', which
    must be greater than :math:`1/2`.

    Parameters
    ----------
    v: ~astropy.units.Quantity
        The velocity in units convertible to m/s.

    T: ~astropy.units.Quantity
        The temperature in Kelvin.

    kappa: ~astropy.units.Quantity
        The kappa parameter is a dimensionless number which sets the slope
        of the energy spectrum of suprathermal particles forming the tail
        of the Kappa velocity distribution function. Kappa must be greater
        than :math:`3/2`.

    particle: str, optional
        Representation of the particle species(e.g., `'p` for protons, `'D+'`
        for deuterium, or `'He-4 +1'` for :math:`He_4^{+1}`
        (singly ionized helium-4)), which defaults to electrons.

    v_drift: ~astropy.units.Quantity, optional
        The drift velocity in units convertible to m/s.

    vTh: ~astropy.units.Quantity, optional
        Thermal velocity (most probable) in m/s. This is used for
        optimization purposes to avoid re-calculating `vTh`, for example
        when integrating over velocity-space.

    units: str, optional
        Selects whether to run function with units and unit checks (when
        equal to "units") or to run as unitless (when equal to "unitless").
        The unitless version is substantially faster for intensive
        computations.

    Returns
    -------
    f : ~astropy.units.Quantity
        Probability density in Velocity^-1, normalized so that
        :math:`\int_{-\infty}^{+\infty} f(v) dv = 1`.

    Raises
    ------
    TypeError
        A parameter argument is not a `~astropy.units.Quantity` and
        cannot be converted into a `~astropy.units.Quantity`.

    ~astropy.units.UnitConversionError
        If the parameters is not in appropriate units.

    ValueError
        If the temperature is negative, or the particle mass or charge state
        cannot be found.

    Notes
    -----
    In one dimension, the Kappa velocity distribution function describing
    the distribution of particles with speed :math:`v` in a plasma with
    temperature :math:`T` and suprathermal parameter :math:`\kappa` is
    given by:

    .. math::

       f = A_\kappa \left(1 + \frac{(\vec{v} -
       \vec{V_{drift}})^2}{\kappa v_{Th},\kappa^2}\right)^{-\kappa}

    where :math:`v_{Th},\kappa` is the kappa thermal speed
    and :math:`A_\kappa = \frac{1}{\sqrt{\pi} \kappa^{3/2} v_{Th},\kappa^2
    \frac{\Gamma(\kappa + 1)}{\Gamma(\kappa - 1/2)}}`
    is the normalization constant.

    As :math:`\kappa` approaches infinity, the kappa distribution function
    converges to the Maxwellian distribution function.

    Examples
    --------
    >>> from astropy import units as u
    >>> v=1 * u.m / u.s
    >>> kappa_velocity_1D(v=v, T=30000*u.K, kappa=4, particle='e', v_drift=0 * u.m / u.s)
    <Quantity 6.75549...e-07 s / m>

    See Also
    --------
    kappa_velocity_3D
    kappa_thermal_speed
    """
    # must have kappa > 3/2 for distribution function to be valid
    if kappa <= 3 / 2:
        raise ValueError(f"Must have kappa > 3/2, instead of {kappa}.")
    if units == "units":
        # unit checks and conversions
        # checking velocity units
        v = v.to(u.m / u.s)
        # catching case where drift velocities have default values, they
        # need to be assigned units
        if v_drift == 0:
            if not isinstance(v_drift, astropy.units.quantity.Quantity):
                v_drift = v_drift * u.m / u.s
        # checking units of drift velocities
        v_drift = v_drift.to(u.m / u.s)
        # convert temperature to Kelvins
        T = T.to(u.K, equivalencies=u.temperature_energy())
        if np.isnan(vTh):
            # get thermal velocity and thermal velocity squared
            vTh = parameters.kappa_thermal_speed(T, kappa, particle=particle)
        elif not np.isnan(vTh):
            # check units of thermal velocity
            vTh = vTh.to(u.m / u.s)
    elif np.isnan(vTh) and units == "unitless":
        # assuming unitless temperature is in Kelvins
        vTh = (parameters.kappa_thermal_speed(T * u.K,
                                              kappa,
                                              particle=particle)).si.value
    # Get thermal velocity squared and accounting for 1D instead of 3D
    vThSq = vTh**2
    # Get square of relative particle velocity
    vSq = (v - v_drift)**2
    # calculating distribution function
    expTerm = (1 + vSq / (kappa * vThSq))**(-kappa)
    coeff1 = 1 / (np.sqrt(np.pi) * kappa**(3 / 2) * vTh)
    coeff2 = gamma(kappa + 1) / (gamma(kappa - 1 / 2))
    distFunc = coeff1 * coeff2 * expTerm
    if units == "units":
        return distFunc.to(u.s / u.m)
    elif units == "unitless":
        return distFunc
예제 #6
0
 def time_kappa_thermal_speed(self):
     kappa_thermal_speed(5 * u.eV, 4, 'p', 'mean_magnitude')